Radical - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[Radical] - find the radical of a Lie algebra

Calling Sequences

     Radical(LieAlgName)

Parameters

     LieAlgName - (optional) name or string, the name of a Lie algebra

 

Description

Examples

Description

• 

The radical of a Lie algebra 𝔤 is the largest solvable ideal contained in 𝔤. The radical of 𝔤 can be calculated as the orthogonal complement of the derived algebra 𝔤' of 𝔤 with respect to the Killing form B, that is, rad𝔤 = {x  𝔤 | Bx, y = 0 for all y 𝔤'}. See, for example, Fulton and Harris Representation Theory, Graduate Texts in Mathematics 129, Springer 1991, Proposition C.22 page 484.

• 

Radical(LieAlgName) calculates the radical of the Lie algebra 𝔤 defined by LieAlgName. If no argument is given, then the radical of the current Lie algebra is found.

• 

A list of vectors defining a basis for the rad(𝔤)is returned. If rad(𝔤) is trivial, then an empty list is returned.

• 

The command Radical is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Radical(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Radical(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First we initialize a Lie algebra.

L1_DGLieAlgebra,Alg1,7,1,2,2,2,1,3,3,2,2,3,1,1,1,4,4,1,1,5,5,1,2,5,4,1,3,4,5,1,4,5,6,1,4,7,4,1,5,7,5,1,6,7,6,2

L1e1,e2=2e2,e1,e3=2e3,e1,e4=e4,e1,e5=e5,e2,e3=e1,e2,e5=e4,e3,e4=e5,e4,e5=e6,e4,e7=e4,e5,e7=e5,e6,e7=2e6

(2.1)

DGsetupL1:

 

We calculate the radical of Alg1 to be the 4-dimensional ideal with basis e4,e5,e6,e7and check that the result is indeed a solvable ideal.

Alg1 > 

radRadical

rade7,e6,e5,e4

(2.2)
Alg1 > 

Queryrad,Solvable

true

(2.3)
Alg1 > 

Queryrad,Ideal

true

(2.4)

 

We remark that the span of the vectors e1,e4,e6,e7is a 4-dimensional solvable subalgebra but it is not an ideal.

Alg1 > 

Ae1,e4,e5,e6,e7

Ae1,e4,e5,e6,e7

(2.5)
Alg1 > 

QueryA,Solvable

true

(2.6)
Alg1 > 

QueryA,Ideal

false

(2.7)

See Also

DifferentialGeometry

LieAlgebras

LeviDecomposition

Nilradical

Query[Ideal]

Query[Solvable]