type/System - Maple Programming Help

Home : Support : Online Help : Science and Engineering : Dynamic Systems : System Object : DynamicSystems/System

type/System

 Calling Sequence type(sys, $\mathrm{System}$) type(sys, $\mathrm{DynamicSystems}:-\mathrm{System}$) type(sys, $\mathrm{System}\left({x}_{1},{x}_{2},\dots \right)$) type(sys, $\mathrm{DynamicSystems}:-\mathrm{System}\left({x}_{1},{x}_{2},\dots \right)$)

Parameters

 sys - expression to check ${x}_{k}$ - (optional) name; one of tf, zpk, coeff, ss, de, ae, continuous, discrete

Description

 • The command $\mathrm{type}\left(\mathrm{sys},\mathrm{DynamicSystems}:-\mathrm{System}\right)$ returns true if the parameter sys is a DynamicSystems[SystemObject], false otherwise.
 • The command $\mathrm{type}\left(\mathrm{sys},\mathrm{DynamicSystems}:-\mathrm{System}\left({x}_{1},\dots ,{x}_{n}\right)\right)$ returns true if the parameter sys is a DynamicSystems[SystemObject], and has properties ${x}_{1}$ to ${x}_{n}$.
 • If parameter ${x}_{k}$ is a set of properties then sys has property ${x}_{k}$ if it has any of the properties in the set. An empty set is always false.
 • The following properties can be used in the parameter ${x}_{k}$:
 – tf - true if sys is a transfer function representation
 – zpk - true if sys is a zero-pole-gain representation
 – coeff - true if sys is a coefficients representation
 – ss - true if sys is a state-space representation
 – de - true if sys is a diff-equation representation
 – ae - true if sys is a algebraic equation representation
 – continuous - true if sys is a continuous system
 – discrete - true if sys is a discrete system
 • The full name for the type, DynamicSystems:-System, is needed unless the short names have been made available using with; see examples.

Examples

 > $\mathrm{sys}≔\mathrm{DynamicSystems}:-\mathrm{NewSystem}\left(\frac{3\mathrm{\pi }}{{s}^{2}}\right):$
 > $\mathrm{type}\left(\mathrm{sys},\mathrm{DynamicSystems}:-\mathrm{System}\right)$
 ${\mathrm{true}}$ (1)

Call with to allow using the short form of the type for the following examples.

 > $\mathrm{with}\left(\mathrm{DynamicSystems}\right):$
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\right)$
 ${\mathrm{true}}$ (2)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{ae}'\right)\right)$
 ${\mathrm{false}}$ (3)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{tf}'\right)\right)$
 ${\mathrm{true}}$ (4)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{ss}'\right)\right)$
 ${\mathrm{false}}$ (5)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{tf}','\mathrm{ss}','\mathrm{coeff}'\right)\right)$
 ${\mathrm{false}}$ (6)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left(\left\{'\mathrm{coeff}','\mathrm{ss}','\mathrm{tf}'\right\}\right)\right)$
 ${\mathrm{true}}$ (7)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{continuous}'\right)\right)$
 ${\mathrm{true}}$ (8)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{discrete}'\right)\right)$
 ${\mathrm{false}}$ (9)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{tf}','\mathrm{continuous}'\right)\right)$
 ${\mathrm{true}}$ (10)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left('\mathrm{tf}','\mathrm{discrete}'\right)\right)$
 ${\mathrm{false}}$ (11)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left(\left\{'\mathrm{coeff}','\mathrm{ss}','\mathrm{tf}'\right\},'\mathrm{continuous}'\right)\right)$
 ${\mathrm{true}}$ (12)
 > $\mathrm{type}\left(\mathrm{sys},'\mathrm{System}'\left(\varnothing \right)\right)$
 ${\mathrm{false}}$ (13)