denom - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

numer

return the numerator of an expression

denom

return the denominator of an expression

 Calling Sequence numer(x) denom(x)

Parameters

 x - algebraic expression

Description

 • The numer(x) function returns the following results for the indicated numeric formats of x.

 Format of x Result rational numerator of x integer x floating-point number x complex rational x multiplied by the common denominator of the real and imaginary parts of x undefined x other unevaluated

 • The denom(x) function returns the following results for the indicated numeric formats of x.

 Format of x Result rational denominator of x integer 1 floating-point number 1.0 complex rational common denominator of the real and imaginary parts of x undefined 1 other unevaluated

 • If x is not numeric, the numer and denom functions are typically called after first using the normal function. The normal function is used to put an expression in the form numerator/denominator where both the numerator and denominator are polynomials. Once x has been normalized, the numer(x) function simply chooses the numerator of x.  The case is similar for denom(x). Note: If x is in normal form, the numerator and denominator have integer coefficients.
 If x is not in normal form, Maple converts it into a normal form (not necessarily the same form that would be returned by the normal function) and a common denominator is found so that x can be expressed in the form numerator/denominator.

Examples

 > $\mathrm{numer}\left(\frac{2}{3}\right)$
 ${2}$ (1)
 > $\mathrm{denom}\left(\frac{2}{3}\right)$
 ${3}$ (2)
 > $\mathrm{denom}\left(45\right)$
 ${1}$ (3)
 > $\mathrm{numer}\left(\frac{1}{2.1x}\right)$
 ${0.4761904762}$ (4)
 > $\mathrm{denom}\left(\frac{1}{2.1x+6.5y}\right)$
 ${2.1}{}{x}{+}{6.5}{}{y}$ (5)
 > $\mathrm{numer}\left(\frac{2}{5}+\frac{I}{6}\right)$
 ${12}{+}{5}{}{I}$ (6)
 > $\mathrm{denom}\left(\frac{2}{5}+\frac{I}{6}\right)$
 ${30}$ (7)

If x is not in normal form, Maple converts it into a normal form.

 > $\mathrm{numer}\left({x}^{2}-\left(x-1\right)\left(x+1\right)\right)$
 ${1}$ (8)
 > $\mathrm{numer}\left(\frac{1+x}{{x}^{\frac{1}{2}}y}\right)$
 ${x}{+}{1}$ (9)
 > $\mathrm{denom}\left(\frac{1+x}{{x}^{\frac{1}{2}}y}\right)$
 $\sqrt{{x}}{}{y}$ (10)
 > $\mathrm{numer}\left(\frac{2}{x}+y\right)$
 ${y}{}{x}{+}{2}$ (11)
 > $\mathrm{numer}\left(x+\frac{1}{x+\frac{1}{x}}\right)$
 ${x}{}\left({{x}}^{{2}}{+}{2}\right)$ (12)
 > $\mathrm{denom}\left(x+\frac{1}{x+\frac{1}{x}}\right)$
 ${{x}}^{{2}}{+}{1}$ (13)
 > $a≔\frac{1}{{x}^{3}}-\frac{1-x+{x}^{2}}{{x}^{3}}$
 ${a}{≔}\frac{{1}}{{{x}}^{{3}}}{-}\frac{{{x}}^{{2}}{-}{x}{+}{1}}{{{x}}^{{3}}}$ (14)
 > $\mathrm{denom}\left(a\right)$
 ${{x}}^{{3}}$ (15)
 > $\mathrm{denom}\left(\mathrm{normal}\left(a\right)\right)$
 ${{x}}^{{2}}$ (16)
 > $\mathrm{simplify}\left(\mathrm{denom}\left(a\right)a\right)$
 ${-}{x}{}\left({x}{-}{1}\right)$ (17)