unapply
returns an operator from an expression and arguments
Calling Sequence
Parameters
Description
Examples
References
unapply(expr, x, y, ..)
unapply(expr, x, y, .., options)
unapply(expr, l)
unapply(expr, l, options)
expr
-
expression
x, y, ..
variable names, or names with type specifiers
l
list of variable names
options
list of optional arguments
The result of unapply(expr, x) is a functional operator. Applying this operator to x gives the original expression.
unapplyexpr,xx→expr
In particular, for a function f⁡x,
unapplyfx,x→f
To construct a multi-argument operator from a multi-variate expression, list all the variables as arguments to unapply or explicitly put all variables in a list and pass it as the second argument to unapply.
Use the unapply command when constructing an operator using contents of variables or evaluated expressions.
The variable names may be simple names of type symbol (e.g., x, y, z), or names with type specifiers using :: (e.g, x::numeric, y::integer, z::float).
The following optional arguments are available.
numeric=variables
For this option variables must be a set or list of variable names, or a single variable name, all of which must correspond to a variable in the input for unapply (that is, in either the list or the specified variable names). With this option, unapply constructs an operator that returns unevaluated whenever the specified variables do not evaluate to numeric values.
Note: This option cannot be used for inputs containing derivatives, such as ⅆⅆxf⁡x or DEsol structures.
numeric
This is simply a shortcut for numeric=variables, which places all the variables in the numeric list.
proc_options=keywords
This option must be a keyword, or list or set of keywords. The unapply command constructs the operator with the specified keywords as options. By default, the options {operator,arrow} are used, but any of arrow, inline, operator, remember, or system are valid keywords.
The unapply command implements the lambda-expressions of lambda calculus.
p≔x2+sin⁡x+1
f≔unapply⁡p,x
f≔x↦x2+sin⁡x+1
f⁡π6
π236+32
q≔x2+y3+1
q≔y3+x2+1
f≔unapply⁡q,x
f≔x↦y3+x2+1
f⁡2
y3+5
g≔unapply⁡q,x,y
g≔x,y↦y3+x2+1
g⁡2,3
32
h≔unapply⁡q,x,y
h≔x,y↦y3+x2+1
h⁡2,3
Example of unapply with the numeric option:
f1≔unapply⁡x2+1,x,numeric
f1 ≔ procxlocalunnamed;iftype⁡evalf⁡x,'numeric'thenx^2+1elifprocname<>'unknown'andnotmember⁡sprintf⁡%a,procname,%,%%,%%%then'procname'⁡xelseunnamed ≔ pointto⁡36893627890009376740[1];'unnamed'⁡xend ifend proc
f1⁡1
2
f1⁡x
This behavior is different from specification of the type with the variable
f2≔unapply⁡x2+1,x::numeric
f2≔x::numeric↦x2+1
f2⁡1
f2⁡x
Error, invalid input: f2 expects its 1st argument, x, to be of type numeric, but received x
Example of unapply with specified options:
f := proc() lprint(`called`); 0; end proc;
f ≔ proclprint⁡called;0end proc
pol≔unapply⁡x2+3⁢x+1+f⁡,x,proc_options=arrow,operator,remember
pol≔x↦x2+3⋅x+1+f⁡
pol⁡1
called
5
pol⁡2
11
Gonnet, G.H. "An Implementation of Operators for Symbolic Algebra Systems" SYMSAC. July 1986.
See Also
apply
examples/functionaloperators
operators[D]
operators[functional]
Download Help Document
What kind of issue would you like to report? (Optional)