 plottools - Maple Programming Help

Home : Support : Online Help : Graphics : Packages : Plot Tools : plottools/reflect

plottools

 reflect
 reflecting PLOT and PLOT3D data structures

 Calling Sequence reflect(p, pt_2d) reflect(p, [pt_2d, pt_2d]) reflect(q, pt_3d) reflect(q, [pt_3d, pt_3d]) reflect(q, [pt_3d, pt_3d, pt_3d])

Parameters

 p - PLOT data structure or a 2-D object q - PLOT3D data structure or a 3-D object pt_2d - (optional) list of two real numbers specifying a point in 2-D pt_3d - (optional) list of three real numbers specifying a point in 3-D

Description

 • The reflect command takes a plot structure or object and produces a new plot structure or object.
 • In the 2-D case, an object can be reflected with respect to either a given point or a given line.
 • In the 3-D case, an object can be reflected with respect to a point, a line, or a plane.
 • Representation:
 A point is represented as a list of either two real numbers (2-D) or three real numbers (3-D).
 A line is represented as a list of two distinct points.
 A plane is represented as a list of three distinct points.
 • The result of a call to reflect is a 2-D or 3-D plot structure or object, which may be displayed with the plots[display] command. You can assign the data structure to a variable, save it in a file, then read it back in for redisplay.  For more information about plot data structures, see plot/structure or plot3d/structure.
 • Several commands in the plottools package can transform plots. For a list, see the plottools help page.  The plots[changecoords] and plots[display] commands can also be used to transform plots.

Examples

 > $\mathrm{with}\left(\mathrm{plottools}\right):$
 > $\mathrm{with}\left(\mathrm{plots}\right):$
 > $p≔\mathrm{plot3d}\left(\mathrm{sin}\left(xy\right)+3,x=-\mathrm{\pi }..\mathrm{\pi },y=-\mathrm{\pi }..\mathrm{\pi }\right):$
 > $q≔\mathrm{reflect}\left(p,\left[\left[0,0,0\right],\left[1,0,0\right],\left[0,1,0\right]\right]\right):$
 > $\mathrm{display}\left(\left[p,q\right],\mathrm{lightmodel}=\mathrm{light1},\mathrm{orientation}=\left[20,-120\right],\mathrm{shading}=\mathrm{zhue}\right)$ 