JacobiP - Maple Help

Online Help

All Products    Maple    MapleSim


JacobiP

Jacobi function

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

JacobiP(n, a, b, x)

Parameters

n

-

algebraic expression

a

-

algebraic expression

b

-

algebraic expression

x

-

algebraic expression

Description

• 

If the first parameter is a non-negative integer, the JacobiP(n, a, b, x) function computes the nth Jacobi polynomial with parameters a and b evaluated at x.

• 

These polynomials are orthogonal on the interval −1,1 with respect to the weight function wx=1xa1+xb when a and b are greater than -1. They satisfy the following:

−11Pma,bxPna,bxwx&d;x={0nm2a+b+1Γn+a+1Γn+b+12n+a+b+1Γn+a+b+1n!n=m

• 

The polynomials satisfy the following recurrence relation:

JacobiP0,a,b,x=1

JacobiP1,a,b,x=a2b2+1+a2+b2x

JacobiPn,a,b,x=2n+a+b1a2b2+2n+a+b22n+a+bxJacobiPn1,a,b,x2nn+a+b2n+a+b2n+a1n+b12n+a+bJacobiPn2,a,b,xnn+a+b2n+a+b2,for n > 1.

• 

For n and not equal to a non-negative integer and a not a negative integer, the analytic extension of the Jacobi polynomial is given by the following:

JacobiPn,a,b,x=a+nahypergeomn,a+b+n+1,a+1,12x2

Examples

JacobiP4,1,34,x

JacobiP4,1,34,x

(1)

simplify,JacobiP

190753276839158192x12973516384x2+97658192x3+38083532768x4

(2)

JacobiP2.2,1,23,0.4

−0.1993478307

(3)

Compatibility

• 

The JacobiP command was updated in Maple 2020.

See Also

ChebyshevT

ChebyshevU

GAMMA

GegenbauerC

HermiteH

LaguerreL

LegendreP

NumberTheory[KroneckerSymbol]

NumberTheory[LegendreSymbol]

orthopoly[P]