Second Order ODEs - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ODE Steps for Second Order ODEs

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve second order ordinary differential equations.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode12xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0

ode12xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0

(1)

ODEStepsode1

Let's solve2xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxMake substitutionu=ⅆⅆxyxto reduce order of ODE2xux9x2+2ux+x2+1ⅆⅆxux=0Check if ODE is exactODE is exact if the lhs is the total derivative of aC2function=0Compute derivative of lhsxFx,u+uFx,uⅆⅆxux=0Evaluate derivatives2x=2xCondition met, ODE is exactExact ODE implies solution will be of this formFx,u=C1,Mx,u=xFx,u,Nx,u=uFx,uSolve forFx,uby integratingMx,uwith respect toxFx,u=+_F1uEvaluate integralFx,u=x2u3x3+_F1uTake derivative ofFx,uwith respect touNx,u=uFx,uCompute derivativex2+2u+1=x2+ⅆⅆu_F1uIsolate forⅆⅆu_F1uⅆⅆu_F1u=2u+1Solve for_F1u_F1u=u2+uSubstitute_F1uinto equation forFx,uFx,u=x2u3x3+u2+uSubstituteFx,uinto the solution of the ODEx2u3x3+u2+u=C1Solve foruxux=x2212x4+12x3+2x2+4C1+12,ux=x2212+x4+12x3+2x2+4C1+12Solve 1st ODE foruxux=x2212x4+12x3+2x2+4C1+12Make substitutionu=ⅆⅆxyxⅆⅆxyx=x2212x4+12x3+2x2+4C1+12Integrate both sides to solve foryxⅆⅆxyxⅆx=x2212x4+12x3+2x2+4C1+12ⅆx+C2Compute lhsyx=x2212x4+12x3+2x2+4C1+12ⅆx+C2Solve 2nd ODE foruxux=x2212+x4+12x3+2x2+4C1+12Make substitutionu=ⅆⅆxyxⅆⅆxyx=x2212+x4+12x3+2x2+4C1+12Integrate both sides to solve foryxⅆⅆxyxⅆx=x2212+x4+12x3+2x2+4C1+12ⅆx+C2Compute lhsyx=x2212+x4+12x3+2x2+4C1+12ⅆx+C2

(2)

ode2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0

ode2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0

(3)

ODEStepsode2

Let's solveⅆ2ⅆx2yxⅆⅆxyxxⅇx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=ⅆⅆxyx+xⅇxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yxⅆⅆxyx=xⅇxCharacteristic polynomial of homogeneous ODEr2r=0Factor the characteristic polynomialrr1=0Roots of the characteristic polynomialr=0,11st solution of the homogeneous ODEy1x=12nd solution of the homogeneous ODEy2x=ⅇxGeneral solution of the ODEyx=C1y1x+C2y2x+ypxSubstitute in solutions of the homogeneous ODEyx=C1+C2ⅇx+ypxFind a particular solutionypxof the ODEUse variation of parameters to findypherefxis the forcing functionypx=y1xy2xfxWy1x,y2xⅆx+y2xy1xfxWy1x,y2xⅆx,fx=xⅇxWronskian of solutions of the homogeneous equationWy1x,y2x=1ⅇx0ⅇxCompute WronskianWy1x,y2x=ⅇxSubstitute functions into equation forypxypx=xⅇxⅆx+ⅇxxⅆxCompute integralsypx=ⅇx1x+12x2Substitute particular solution into general solution to ODEyx=C1+C2ⅇx+ⅇx1x+12x2

(4)

ode3ⅆ2ⅆx2yx+5ⅆⅆxyx2yx=0

ode3ⅆ2ⅆx2yx+5ⅆⅆxyx2yx=0

(5)

ODEStepsode3

Let's solveⅆ2ⅆx2yx+5ⅆⅆxyx2yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxDefine new dependent variableuux=Computeⅆ2ⅆx2yx=Use chain rule on the lhs=Substitute in the definition ofuuy=Make substitutionsⅆⅆxyx=uy,ⅆ2ⅆx2yx=uyⅆⅆyuyto reduce order of ODEuyⅆⅆyuy+5uy2y=0Separate variablesⅆⅆyuyuy=5yIntegrate both sides with respect toyⅆⅆyuyuyⅆy=5yⅆy+C1Evaluate integrallnuy=5lny+C1Solve foruyuy=ⅇC1y5Solve 1st ODE foruyuy=ⅇC1y5Revert to original variables with substitutionuy=ⅆⅆxyx,y=yxⅆⅆxyx=ⅇC1yx5Separate variablesⅆⅆ