LinearAlgebra
ProjectionMatrix
construct the matrix of the orthogonal projection onto a subspace
Calling Sequence
Parameters
Description
Examples
Compatibility
ProjectionMatrix(S, conj, options)
S
-
{set, list}(Vector); Vectors spanning the subspace to project onto
conj
BooleanOpt(conjugate); (optional) specifies if the Hermitian transpose is used (default: true)
options
(optional); constructor options for the result object
The ProjectionMatrix(S) command constructs the matrix of the orthogonal linear projection onto the subspace spanned by the vectors in S. If B is a maximal, linearly independent subset of S and M is the Matrix whose columns are the Vectors in B, then
ProjectionMatrix⁡S=M⋅M*⋅M−1⋅M*
If the conj option is omitted or provided in either of the forms conjugate or conjugate=true, the projection matrix is constructed using Hermitian transpose operations. If the conj option is given as conjugate=false, the ordinary transpose is used.
Additional arguments are passed as options to the Matrix constructor which builds the result.
with⁡LinearAlgebra:
S ≔ 1,2,3,4,4,3,2,1
S≔1234,4321
P ≔ ProjectionMatrix⁡S
P≔71025110−1525310151101101531025−1511025710
v ≔ 1,0,−1,3
v≔10−13
w ≔ `.`⁡P,v
w≔012132
Basis⁡op⁡S,w=S
1234,4321=1234,4321
`.`⁡w,v−w
0
P ≔ ProjectionMatrix⁡1,2,3,4,5,6,datatype=float8,shape=symmetric
P≔0.8333333333333330.333333333333333−0.1666666666666670.3333333333333330.3333333333333330.333333333333333−0.1666666666666670.3333333333333330.833333333333333
`.`⁡P,1,0,0
0.8333333333333330.333333333333333−0.166666666666667
ProjectionMatrix⁡a,1
a⁢a&conjugate0;a&conjugate0;⁢a+1aa&conjugate0;⁢a+1a&conjugate0;a&conjugate0;⁢a+11a&conjugate0;⁢a+1
ProjectionMatrix⁡a,1,conjugate=false
a2a2+1aa2+1aa2+11a2+1
The LinearAlgebra[ProjectionMatrix] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
Matrix
Vector
Download Help Document
What kind of issue would you like to report? (Optional)