Generate random sample drawn from the noncentral Beta distribution.
>

$\mathrm{with}\left(\mathrm{Statistics}\right)\:$

>

$X\u2254\mathrm{RandomVariable}\left(\mathrm{NonCentralBeta}\left(3\,10\,2\right)\right)\:$

>

$A\u2254\mathrm{Sample}\left(X\,{10}^{6}\right)\:$

Compute the five point summary of the data sample.
>

$\mathrm{FivePointSummary}\left(A\right)$

$\left[\begin{array}{c}{\mathrm{minimum}}{=}{0.00284705659174078}\\ {\mathrm{lowerhinge}}{=}{0.188161202689945}\\ {\mathrm{median}}{=}{0.271067705972343}\\ {\mathrm{upperhinge}}{=}{0.364718410290619}\\ {\mathrm{maximum}}{=}{0.881224090305735}\end{array}\right]$
 (1) 
Compute the mean, standard deviation, skewness, kurtosis, etc.
>

$\mathrm{DataSummary}\left(A\right)$

$\left[\begin{array}{c}{\mathrm{mean}}{=}{0.282155087071985}\\ {\mathrm{standarddeviation}}{=}{0.125196186114285}\\ {\mathrm{skewness}}{=}{0.440928241161531}\\ {\mathrm{kurtosis}}{=}{2.84630585844533}\\ {\mathrm{minimum}}{=}{0.00284705659174078}\\ {\mathrm{maximum}}{=}{0.881224090305735}\\ {\mathrm{cumulativeweight}}{=}{1.000000}{}{{10}}^{{6}}\end{array}\right]$
 (2) 
Estimate the mode.
>

$\mathrm{Mode}\left(A\right)$

${0.241228990034607}$
 (3) 
Compute the second moment about .3.
>

$\mathrm{Moment}\left(A\,2\,\mathrm{origin}\=0.3\right)$

${0.0159925102608858}$
 (4) 
Compute mean, trimmed mean and winsorized mean.
>

$\mathrm{Mean}\left(A\right)\,\mathrm{TrimmedMean}\left(A\,1\,99\right)\,\mathrm{WinsorizedMean}\left(A\,1\,99\right)$

${0.282155087072001}{,}{0.280925669045912}{,}{0.281857130439082}$
 (5) 
Compute frequency table for A.
>

$\mathrm{FrequencyTable}\left(A\,\mathrm{range}\=0..1\,\mathrm{bins}\=5\right)$

$\left[\begin{array}{ccccc}{0.}{..}{0.200000000000000}& {283991.}& {28.39910000}& {283991.}& {28.39910000}\\ {0.200000000000000}{..}{0.400000000000000}& {536689.}& {53.66890000}& {820680.}& {82.06800000}\\ {0.400000000000000}{..}{0.600000000000000}& {168883.}& {16.88830000}& {989563.}& {98.95630000}\\ {0.600000000000000}{..}{0.800000000000000}& {10407.}& {1.040700000}& {999970.}& {99.99700000}\\ {0.800000000000000}{..}{1.}& {30.}& {0.003000000000}& {1.000000}{}{{10}}^{{6}}& {100.}\end{array}\right]$
 (6) 