DerivedDistribution - Maple Help

DerivedDistribution

find derived distribution of a distribution

 Calling Sequence DerivedDistribution(dist)

Parameters

 dist - a Distribution object

Description

 • The DerivedDistribution method returns a Distribution object spanned by all the commutators of vector fields in dist.
 • This method is of little interest if the input Distribution dist is involutive, since in that case DerivedDistribution(dist) will simply return dist itself.
 • This method is associated with the Distribution object. For more detail see Overview of the Distribution object.

Examples

 > $\mathrm{with}\left(\mathrm{LieAlgebrasOfVectorFields}\right):$

Build vector fields...

 > $\mathrm{V1}≔\mathrm{VectorField}\left(\mathrm{D}\left[x\right],\mathrm{space}=\left[x,y,z,w\right]\right)$
 ${\mathrm{V1}}{≔}\frac{{ⅆ}}{{ⅆ}{x}}$ (1)
 > $\mathrm{V2}≔\mathrm{VectorField}\left(\mathrm{D}\left[y\right]+x\mathrm{D}\left[z\right]+z\mathrm{D}\left[w\right],\mathrm{space}=\left[x,y,z,w\right]\right)$
 ${\mathrm{V2}}{≔}\frac{{ⅆ}}{{ⅆ}{y}}{+}{x}{}\left(\frac{{ⅆ}}{{ⅆ}{z}}\right){+}{z}{}\left(\frac{{ⅆ}}{{ⅆ}{w}}\right)$ (2)

Construct the associated distribution...

 > $\mathrm{\Sigma }≔\mathrm{Distribution}\left(\mathrm{V1},\mathrm{V2}\right)$
 ${\mathrm{\Sigma }}{≔}\left\{\frac{{ⅆ}}{{ⅆ}{x}}{,}\frac{\frac{{ⅆ}}{{ⅆ}{y}}}{{z}}{+}\frac{{x}{}\left(\frac{{ⅆ}}{{ⅆ}{z}}\right)}{{z}}{+}\frac{{ⅆ}}{{ⅆ}{w}}\right\}$ (3)

Construct derived distribution...

 > $\mathrm{DerivedDistribution}\left(\mathrm{\Sigma }\right)$
 $\left\{\frac{\frac{{ⅆ}}{{ⅆ}{y}}}{{z}}{+}\frac{{ⅆ}}{{ⅆ}{w}}{,}\frac{{ⅆ}}{{ⅆ}{x}}{,}\frac{{ⅆ}}{{ⅆ}{z}}\right\}$ (4)
 > $\mathrm{IsInvolutive}\left(\mathrm{\Sigma }\right)$
 ${\mathrm{false}}$ (5)

Compatibility

 • The DerivedDistribution command was introduced in Maple 2020.