 Cuboid - MapleSim Help

Cuboid

A node of Cuboid  Description The Cuboid component models a generic ideal thermal conductor with cubic geometry. The following image uses Thermal Conductor components  to illustrate the behavior of Cuboid component. Each Thermal Conductor component is connected to the and$\mathrm{port_bottom}.$  All Thermal Conductors are connected to the Heat Capacitor. The  is directly connected to the Heat Capacitor. The geometry of Cuboid is the following.  Equations

(For details, see Thermal Conductor  and Heat Capacitor help).

The geometries of Heat Capacitor and each Thermal Conductor are defined by the following equations. Heat Capacitor The volume $V$ is defined by the following equation. $V\mathit{=}L\mathit{\cdot }W\mathit{\cdot }H$ Thermal Conductor The area $A$ and distance are defined by the following equations. Left and right Thermal Conductors $W\cdot H$$\frac{L}{2}$ Front and back Thermal Conductors $L\cdot H$$\frac{W}{2}$ Top and bottom Thermal Conductors $L\cdot W$$\frac{H}{2}$ If  is true, Left and right Thermal Conductors $W\cdot H\cdot \mathrm{k__cc}\left[1\right]$$\frac{L}{2}$ Front and back Thermal Conductors $L\cdot H\cdot \mathrm{k__cc}\left[2\right]$$\frac{W}{2}$ Top and bottom Thermal Conductors $L\cdot W\cdot \mathrm{k__cc}\left[3\right]$$\frac{H}{2}$ (is completely the same as  is false) Variables

(For details, see Thermal Conductor  and Heat Capacitor help).

 Symbol Units Description Modelica ID $T$ $K$ Temperature of Heat Capacitor T Connections

 Name Units Condition Description Modelica ID $\mathrm{port_left}$ Thermal port of left $\mathrm{port_left}$ $\mathrm{port_right}$ Thermal port of right $\mathrm{port_right}$ $\mathrm{port_front}$ Thermal port of front $\mathrm{port_front}$ $\mathrm{port_back}$ Thermal port of back $\mathrm{port_back}$ $\mathrm{port_top}\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}$  Thermal port of top $\mathrm{port_top}\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}$ $\mathrm{port_bottom}$ Thermal port of bottom $\mathrm{port_bottom}$ $\mathrm{port_center}$ Thermal port of center $\mathrm{port_center}$ Parameters

 Symbol Default Units Description Modelica ID $\mathrm{Material}$ $\mathrm{SolidPropertyData}$ $-$ Solid material property data Material $\frac{W}{m\cdot K}$ Material.k is the thermal conductivity of the material Material.k $\frac{J}{\mathrm{kg}\cdot K}$ Material.cp is the specific heat capacity of the material Material.cp $\frac{\mathrm{kg}}{{m}^{3}}$ Material.rho is the density of the material Material.rho $\mathrm{false}$  If true, correction coefficient for thermal conductivity $\mathrm{k__cc}$ is available and that enables you to consider anisotoropic thermal conductivity per each direction L, W and, H use_kcc $\mathrm{k__cc}$ $\left[1,1,1\right]$ ${m}^{}$ (When  is true) Correction coefficient for thermal conductivity in each direction [L, W, H] kcc $L$ $1$ ${m}^{}$ Length of cubic L $W$ $1$ ${m}^{}$ Width of cubic W $H$ $1$ ${m}^{}$ Height of cubic H $\mathrm{T__start}$ $293.15$ $K$ Initial condition of temperature T_start $\mathrm{fixed}$ $\mathrm{true}$ $-$ True enforces the T_start initial condition fixed Parameters for Visualization (Optional)

Note: If you enable Show Visualization option, you can visualize temperature change as colored geometry in 3-D Playback Window. To make this function available, you have to enable 3-D Animation option in Multibody Settings.
The quality of the visualization is affected if any open plot windows are behind the 3-D Playback Window. If you are experiencing playback issues, try moving the 3-D Playback Window so that it does not overlap a plot window. Alternatively, minimize or close any open plot windows.

(For more details about the relation between color and temperature, see Color Blend  help).

 Symbol Default Units Description Modelica ID $\mathrm{false}$ $-$ If true, you can visualize temperature of Heat Capacitor as colored sphere with geometry in 3-D Playback Window. And the following visualization parameters are available. VisOn $\mathrm{Position}$ $\left[0,0,0\right]$ $m$ Position of the node in visualization [X, Y, Z]. pos Rotation $\left[0,0,0\right]$ rad Rotation of the node in visualization [X, Y, Z]. rot $\mathrm{Transparent}$ $\mathrm{false}$ $-$ If true, heat capacitor sphere is displayed as transparent. transparent $\mathrm{T__max}$ $373.15$ $K$ Upper limit of temperature in the color blend. Tmax $\colorbox[rgb]{1,0,0}{{\mathrm{RGB}}}\left(\colorbox[rgb]{1,0,0}{{255}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\right)$ $-$ Color when temperature is over Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmax $\mathrm{T__min}$ $273.15$ $K$ Lower limit of temperature in the color blend. Tmin $\colorbox[rgb]{0,0,1}{{\mathrm{RGB}}}\left(\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{255}}\right)$ $-$ Color when temperature is under $\mathrm{T__min}$. Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmin $\mathrm{R__sphere}$ $0.2$ $m$ Radius of visualized heat capacitor sphere. Sradius See Also