GroupTheory/SymplecticSemilinearGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/SymplecticSemilinearGroup

GroupTheory

  

SymplecticSemilinearGroup

  

construct a permutation group isomorphic to the symplectic semi-linear group over a finite field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

SymplecticSemilinearGroup(n, q)

Sigmap( n, q )

Parameters

n

-

: even    : an even positive integer

q

-

: primepower    : a power of a prime number

Description

• 

The symplectic semi-linear group Σpn,q is the set of all semi-linear transformations of an n-dimensional vector space V over the field with q elements whose linear part preserves a non-degenerate symplectic form. The dimension n must be an even positive integer. The group Σpn,q is a semi-direct product of the symplectic group Spn,q with the Galois group of the field GF(q). Therefore, if q is prime, Σpn,q is isomorphic to Spn,q . Furthermore, if n=2, then Spn,q and SLn,q coincide, so ΣL2,q is returned in this case.

• 

If n and q are positive integers, then the SymplecticSemilinearGroup( n, q ) command returns a permutation group isomorphic to the symplectic semi-linear group  Σpn,q . Otherwise, a symbolic group is returned, with which Maple can do some limited computations.

• 

The abbreviation Sigmap( n, q ) is available as a synonym for SymplecticSemilinearGroup( n, q ).

Examples

withGroupTheory:

GSymplecticSemilinearGroup2,8

GΣL2,8

(1)

GroupOrderG

1512

(2)

Notice that

GroupOrderSigmaL2,8

1512

(3)

GSigmap4,4

GΣp4,4

(4)

GroupOrderG

1958400

(5)

IsSimpleG

false

(6)

IsSimpleDerivedSubgroupG

true

(7)

GSigmap8,q

GΣp8,q

(8)

GroupOrderG

logpqq16q21q41q61q81

(9)

See Also

GroupTheory[SymplecticGroup]