Stabilizer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Stabilizer

  

construct the stabilizer of a point, list, or set in a permutation group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Stabilizer( alpha, G )

Stabiliser( alpha, G )

Stabilizer( L, G )

Stabiliser( L, G )

Stabilizer( S, G )

Stabiliser( S, G )

Parameters

G

-

a permutation group

alpha

-

posint; the point whose stabilizer is to be computed

L

-

list(posint); a list of points

S

-

set(posint); a set of points

Description

• 

The stabilizer of a point α under a permutation group G is the set of elements of G that fix α.  It is a subgroup of G. That is, an element g in G belongs to the stabilizer of α if αg=α.

• 

The Stabilizer( alpha, G ) command computes the stabilizer of the point alpha under the action of the permutation group G.

• 

The Stabilizer( L, G ) command, where L is a list of points in the domain of the permutation group G, computes the iterated stabilizer of L in G. This is the set of elements of G that fix each point in the list L.

• 

The Stabilizer( S, G ) command, where S is a subset of the domain of the permutation group G, computes the set-wise stabilizer of S in G. This is the set of elements g in G that map the set S to itself, but do not necessarily fix each member of S.

• 

The Stabiliser command is provided as an alias.

Examples

withGroupTheory:

GGroup1,2,4,5

G1,2,4,5

(1)

SStabilizer3,G

S4,5,1,24,5

(2)

GroupOrderS

4

(3)

GSL3,3

GSL3,3

(4)

SStabilizer1,G

S2,11,6,4,12,73,13,58,10,5,78,139,1210,11

(5)

GroupOrderS

432

(6)

IsSubgroupS,G

true

(7)

IsNormalS,G

false

(8)

SStabilizer1,7,3,11,G

S

(9)

SStabilizer1,2,G

S5,8,116,9,127,10,13,5,10,126,8,137,9,11,3,46,79,1012,13,6,78,119,1310,12

(10)

AreIsomorphicS,DirectProductSymm3,Symm3

true

(11)

SStabilizer1,2,G

S5,11,86,12,97,13,10,5,10,126,8,137,9,11,6,78,119,1310,12,3,48,119,1210,13,1,23,45,12,7,98,11,13,10

(12)

AreIsomorphicS,WreathProductSymm3,CyclicGroup2

true

(13)

Compatibility

• 

The GroupTheory[Stabilizer] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[Group]

GroupTheory[GroupOrder]

GroupTheory[IsNormal]

GroupTheory[IsSubgroup]

GroupTheory[SL]