SpecialOrthogonalGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : SpecialOrthogonalGroup

GroupTheory

  

SpecialOrthogonalGroup

  

construct a permutation group isomorphic to a special orthogonal group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SpecialOrthogonalGroup(d, n, q)

SO(d, n, q)

Parameters

d

-

0, 1 or -1

n

-

a positive integer

q

-

power of a prime number

Description

• 

The special orthogonal group SOd,n,q is the set of all n×n matrices over the field with q elements that respect a non-singular quadratic form and have determinant equal to 1. The value of d must be 0 for odd values of n, or 1 or −1 for even values of n. Note that for even values of q the groups SOd,n,q and GOd,n,q are isomorphic.

• 

The SpecialOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the special orthogonal group SOd,n,q .

• 

If either or both of the parameters n and q is non-numeric, then a symbolic group representing the indicated special orthogonal group is returned. (The argument d must be numeric, equal to one of 0, 1 or −1.)

• 

The command SO(d, n, q) is provided as an alias.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

SpecialOrthogonalGroup0,9,2

GO0,9,2

(1)

GSpecialOrthogonalGroup1,4,7

GSO1,4,7

(2)

DegreeG

128

(3)

GroupOrderG

112896

(4)

IsTransitiveG

true

(5)

GSpecialOrthogonalGroup1,4,7

GSO-1,4,7

(6)

DegreeG

100

(7)

GroupOrderG

117600

(8)

IsTransitiveG

true

(9)

GroupOrderSpecialOrthogonalGroup0,7,3

9170703360

(10)

IsSimpleDerivedSubgroupSpecialOrthogonalGroup1,4,8

true

(11)

IsSimpleDerivedSubgroupSpecialOrthogonalGroup1,4,8

false

(12)

GSpecialOrthogonalGroup0,5,q

GSO0,5,q

(13)

GroupOrderG

q4q21q41

(14)

DisplayCharacterTableSpecialOrthogonalGroup1,4,3

C

1a

2a

2b

2c

3a

3b

3c

3d

4a

4b

4c

4d

6a

6b

6c

6d

8a

8b

12a

12b

|C|

1

1

18

72

8

8

32

32

6

6

36

36

8

8

32

32

72

72

48

48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

χ__2

1

1

1

−1

1

1

1

1

1

1

−1

−1

1

1

1

1

−1

−1

1

1

χ__3

2

2

2

0

−1

−1

−1

2

2

2

0

0

−1

−1

2

−1

0

0

−1

−1

χ__4

2

2

2

0

−1

−1

2

−1

2

2

0

0

−1

−1

−1

2

0

0

−1

−1

χ__5

2

2

2

0

−1

2

−1

−1

2

2

0

0

2

−1

−1

−1

0

0

−1

2

χ__6

2

2

2

0

2

−1

−1

−1

2

2

0

0

−1

2

−1

−1

0

0

2

−1

χ__7

3

3

−1

−1

3

0

0

0

3

−1

1

1

0

3

0

0

1

−1

−1

0

χ__8

3

3

−1

1

3

0

0

0

3

−1

−1

−1

0

3

0

0

−1

1

−1

0

χ__9

3

3

−1

−1

0

3

0

0

−1

3

1

1

3

0

0

0

−1

1

0

−1

χ__10

3

3

−1

1

0

3

0

0

−1

3

−1

−1

3

0

0

0

1

−1

0

−1

χ__11

4

−4

0

0

−2

−2

1

1

0

0

−2

2

2

2

−1

−1

0

0

0

0

χ__12

4

−4

0

0

−2

−2

1

1

0

0

2

−2

2

2

−1

−1

0

0

0

0

χ__13

6

6

−2

0

0

−3

0

0

−2

6

0

0

−3

0

0

0

0

0

0

1

χ__14

6

6

−2

0

−3

0

0

0

6

−2

0

0

0

−3

0

0

0

0

1

0

χ__15

8

−8

0

0

2

2

−1

2

0

0

0

0

−2

−2

−2

1

0

0

0

0

χ__16

8

−8

0

0

2

2

2

−1

0

0

0

0

−2

−2

1

−2

0

0

0

0

χ__17

8

−8

0

0

−4

2

−1

−1

0

0

0

0

−2

4

1

1

0

0

0

0

χ__18

8

−8

0

0

2

−4

−1

−1

0

0

0

0

4

−2

1

1

0

0

0

0

χ__19

9

9

1

−1

0

0

0

0

−3

−3

−1

−1

0

0

0

0

1

1

0

0

χ__20

9

9

1

1

0

0

0

0

−3

−3

1

1

0

0

0

0

−1

−1

0

0

Compatibility

• 

The GroupTheory[SpecialOrthogonalGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[SpecialOrthogonalGroup] command was updated in Maple 2020.

See Also

GroupTheory[Degree]

GroupTheory[GeneralOrthogonalGroup]

GroupTheory[GroupOrder]

GroupTheory[IsTransitive]