Socle - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Socle

  

construct the socle of a group

  

Cosocle

  

construct the cosocle of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Socle( G )

Cosocle( G )

Parameters

G

-

a permutation group

Description

• 

The socle of a group G is the subgroup generated by the minimal normal (non-trivial) subgroups of G.

• 

The cosocle of a group G is the intersection of the maximal normal subgroups of G. It is also equal to the set of "normal non-generators" of G, that is, the set of elements of G that can be omitted from any set X for which G is the normal closure of X.

• 

The Socle( G ) command constructs the socle of a group G.

• 

The Cosocle( G ) command constructs the cosocle of the group G.

Examples

withGroupTheory:

SSocleSymm4

S1,42,3,1,23,4

(1)

dfDirectFactorsS

df1,42,3,1,23,4

(2)

andmapIsSimple,df

true

(3)

AreIsomorphicCosocleSymm4,Alt4

true

(4)

SSocleAlt6

SA6

(5)

IsSubgroupAlt6,S

true

(6)

GDirectProductAlt5,Alt5

G1,2,3,4,5,3,4,5,6,7,8,9,10,8,9,10

(7)

IsSubgroupG,SocleG

true

(8)

IsTrivialCosocleAlt6

true

(9)

The cosocle of a cyclic group is trivial if, and only if, the group has square-free order.

CosocleCyclicGroup30

(10)

CosocleCyclicGroup12

1,72,83,94,105,116,12

(11)

Compatibility

• 

The GroupTheory[Socle] and GroupTheory[Cosocle] commands were introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DirectFactors]

GroupTheory[IsSimple]

GroupTheory[IsSubgroup]

GroupTheory[SymmetricGroup]