GroupTheory/ProjectiveSymplecticSemilinearGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/ProjectiveSymplecticSemilinearGroup

GroupTheory

  

ProjectiveSymplecticSemilinearGroup

  

construct a permutation group isomorphic to the projective symplectic semi-linear group over a finite field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ProjectiveSymplecticSemilinearGroup(n, q)

PSigmap( n, q )

Parameters

n

-

: even    : an even positive integer

q

-

: primepower    : a power of a prime number

Description

• 

The projective symplectic semi-linear group PΣpn,q is the quotient of the symplectic semi-linear group Σpn,q by the centre of its subgroup Spn,q . The dimension n must be an even positive integer. The group PΣpn,q is a semi-direct product of the projective symplectic group PSpn,q with the Galois group of the field GF(q). Therefore, if q is prime, PΣpn,q is isomorphic to PSpn,q .

• 

If n and q are positive integers, then the ProjectiveSymplecticSemilinearGroup( n, q ) command returns a permutation group isomorphic to the projective symplectic semi-linear group  PΣpn,q . Otherwise, a symbolic group is returned, with which Maple can do some limited computations.

• 

The abbreviation PSigmap( n, q ) is available as a synonym for ProjectiveSymplecticSemilinearGroup( n, q ).

Examples

withGroupTheory:

GProjectiveSymplecticSemilinearGroup2,9

GPΣL2,9

(1)

GroupOrderG

720

(2)

GPSigmap4,25

GPΣp4,25

(3)

GroupOrderG

95214600000000

(4)

IsSimpleG

false

(5)

GPSigmap6,q

GPΣp6,q

(6)

GroupOrderG

logpqq9q21q41q61igcd2,q1

(7)

See Also

GroupTheory[ProjectiveSymplecticGroup]

GroupTheory[SymplecticSemilinearGroup]