GroupTheory/ProjectiveGeneralSemilinearGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/ProjectiveGeneralSemilinearGroup

GroupTheory

  

ProjectiveGeneralSemilinearGroup

  

construct a permutation group isomorphic to the General Semi-linear Group over a finite field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ProjectiveGeneralSemilinearGroup( n, q )

PGammaL( n, q )

Parameters

n

-

a positive integer

q

-

a power of a prime number

Description

• 

The projective general semi-linear group PΓLn,q is the quotient of the group ΓLn,q of all semi-linear transformations of an n-dimensional vector space over the field with q elements, by the center of GLn,q . It is isomorphic to a semi-direct product of the general linear group GLn,q with the Galois group of the field with q elements over its prime sub-field. Thus, if q is prime, then PΓLn,q and GLn,q are equal.

• 

If n is a positive integer, and q is a prime power, then the ProjectiveGeneralSemilinearGroup( n, q ) command returns a permutation group isomorphic to the projective general semi-linear group PΓLn,q . Otherwise, a symbolic group is returned, with which Maple can do some limited computations.

• 

The abbreviation PGammaL( n, q ) is available as a synonym for ProjectiveGeneralSemilinearGroup( n, q ).

Examples

withGroupTheory:

GProjectiveGeneralSemilinearGroup2,4

G2,3,4,1,2,5,3,4

(1)

GroupOrderG

120

(2)

AreIsomorphicG,Symm5

true

(3)

GPGammaL2,5

G2,4,5,3,1,5,62,3,4

(4)

GroupOrderG

120

(5)

AreIsomorphicG,Symm5

true

(6)

GPGammaL2,9

G2,7,5,6,3,4,9,8,1,3,104,5,76,8,9,4,85,96,7

(7)

GroupOrderG

1440

(8)

ctCharacterTableG

Displayct

C

1a

2a

2b

2c

3a

4a

4b

4c

5a

6a

8a

8b

10a

|C|

1

30

36

45

80

90

90

180

144

240

180

180

144

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

1

1

1

1

1

χ__2

1

−1

−1

1

1

−1

1

1

1

−1

−1

1

−1

χ__3

1

−1

1

1

1

−1

1

−1

1

−1

1

−1

1

χ__4

1

1

−1

1

1

1

1

−1

1

1

−1

−1

−1

χ__5

9

−3

−1

1

0

1

1

−1

−1

0

1

1

−1

χ__6

9

−3

1

1

0

1

1

1

−1

0

−1

−1

1

χ__7

9

3

−1

1

0

−1

1

1

−1

0

1

−1

−1

χ__8

9

3

1

1

0

−1

1

−1

−1

0

−1

1

1

χ__9

10

−2

0

2

1

−2

−2

0

0

1

0

0

0

χ__10

10

2

0

2

1

2

−2

0

0

−1

0

0

0

χ__11

16

0

−4

0

−2

0

0

0

1

0

0

0

1

χ__12

16

0

4

0

−2

0

0

0

1

0

0

0

−1

χ__13

20

0

0

−4

2

0

0

0

0

0

0

0

0

DrawNormalSubgroupLatticeG

GroupOrderPGammaL3,8

49448448

(9)

GroupOrderPGammaLn,q

logpqk=0n1qnqkq1

(10)

GroupOrderPGammaL5,q

logpqq51q5qq5q2q5q3q5q4q1

(11)

See Also

GF

GroupTheory[GeneralLinearGroup]

GroupTheory[GroupOrder]

GroupTheory[logp]

GroupTheory[SpecialSemilinearGroup]