NormalClosure - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

NormalClosure

  

construct the normal closure of a subgroup or subset of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

NormalClosure( S, G )

NormalClosure( S )

Parameters

S

-

a subgroup of G or a set of elements of G

G

-

a permutation group or a Cayley table group

Description

• 

The normal closure of a subset S in a group G is the smallest normal subgroup of G containing S.

• 

The NormalClosure( G ) command constructs the normal closure of S in G.

• 

The group G must be an instance of a permutation group or a Cayley table group.

• 

If S is a subgroup of a group, then the one-argument form NormalClosure( S ) constructs the normal closure of S in the parent group Supergroup( S ).

Examples

withGroupTheory:

GAlt4

GA4

(1)

HSylowSubgroup3,G

H1,3,2

(2)

GroupOrderH

3

(3)

NNormalClosureH

N1,4,3,1,3,2

(4)

GroupOrderN

12

(5)

GSymmetricGroup3

GS3

(6)

NNormalClosurePerm1,2,G

N2,3,1,2

(7)

GroupOrderN

6

(8)

GroupOrderNormalClosurePerm1,2,3,G

3

(9)

The alternating group A8 is simple, so the normal closure of any subset with a non-trivial element is the entire group.

GAlt8

GA8

(10)

dogRandomElementGuntilgPerm

1,3,6,24,7

(11)

IsSubgroupG,NormalClosureg,G

true

(12)

Compatibility

• 

The GroupTheory[NormalClosure] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[GroupOrder]

GroupTheory[IsNormal]

GroupTheory[IsSubgroup]

GroupTheory[RandomElement]

GroupTheory[SylowSubgroup]

GroupTheory[SymmetricGroup]

Perm