IsDedekind - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

IsHamiltonian

  

attempt to determine whether a group is Hamiltonian

  

IsDedekind

  

attempt to determine whether a group is Dedekind

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsDedekind( G )

IsHamiltonian( G )

Parameters

G

-

a permutation group

Description

• 

A group G is Dedekind if every subgroup of G is normal in G. Every Abelian group is obviously a Dedekind group, but non-Abelian Dedekind groups exist.

• 

A group G is Hamiltonian if it is a non-commutative Dedekind group.

• 

The IsDedekind( G ) command attempts to determine whether the group G is Dedekind.  It returns true if G is Dedekind and returns false otherwise.

• 

The IsHamiltonian( G ) command attempts to determine whether the group G is Hamiltonian, returning true if G is Hamiltonian, and false otherwise.

• 

The smallest Hamiltonian group is the quaternion group of order 8.

Examples

withGroupTheory:

IsHamiltonianQuaternionGroup

true

(1)

andmapIsNormal,convertSubgroupLatticeQuaternionGroup,list,QuaternionGroup

true

(2)

The fact that this group is Hamiltonian is visible from the subgroup lattice:

DrawSubgroupLatticeQuaternionGroup

IsDedekindQuaternionGroup

true

(3)

IsHamiltonianCyclicGroup10

false

(4)

IsDedekindCyclicGroup10

true

(5)

IsDedekindDihedralGroup4

false

(6)

IsHamiltonianDihedralGroup4

false

(7)

andmapIsNormal,convertSubgroupLatticeDihedralGroup4,list,DihedralGroup4

false

(8)

You can see that the dihedral group of order 8 is not Hamiltonian by looking at its subgroup lattice.

DrawSubgroupLatticeDihedralGroup4

IsHamiltonianSmallGroup256,56084

true

(9)

IsDedekindSmallGroup256,56085

false

(10)

Compatibility

• 

The GroupTheory[IsHamiltonian] and GroupTheory[IsDedekind] commands were introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory

GroupTheory[DihedralGroup]

GroupTheory[IsAbelian]

GroupTheory[IsNormal]

GroupTheory[QuaternionGroup]

GroupTheory[SmallGroup]