GroupTheory/HallSystem - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/HallSystem

GroupTheory

  

HallSystem

  

compute a Hall system for a finite soluble group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

HallSystem( G )

Parameters

G

-

a finite soluble group

Description

• 

Let G be a finite soluble group.  A Hall system for G is a collection C of Hall π-subgroups of G, one for each subset π of the prime divisors of the order of G. Note that this includes both G itself, as well as the trivial subgroup of G.

• 

A Hall system for G exists provided that G is a soluble group, and conversely.

• 

The HallSystem( G ) command constructs a Hall system for the soluble group G. If the group G is not soluble, then an exception is raised.

Examples

withGroupTheory:

CHallSystemSymm3

C1,2,1,2,3,1,2,3,1,3,

(1)

mapGroupOrder,C

1,2,3,6

(2)

CHallSystemAlt4

C1,2,3,2,3,4,1,2,4,1,23,4,1,32,4,

(3)

mapGroupOrder,C

1,3,4,12

(4)

CHallSystemWreathProductSymm3,CyclicGroup2

C1,2,1,2,3,1,42,53,6,4,5,6,1,2,3,2,34,5,2,3,4,5,1,62,53,4,

(5)

mapGroupOrder,C

1,8,9,72

(6)

GFrobeniusGroup42,1

G2,73,64,5,2,3,54,7,6,1,2,3,4,5,6,7

(7)

ifactorGroupOrderG

237

(8)

CHallSystemG

C2,73,64,5,2,3,54,7,6,1,2,3,4,5,6,7,1,4,7,3,6,2,5,1,4,23,5,6,1,4,7,3,6,2,5,1,62,53,4,1,3,42,7,6,1,23,74,6,1,4,7,3,6,2,5,1,3,42,7,6,1,23,74,6,

(9)

mapGroupOrder,C

1,2,3,6,7,14,21,42

(10)

GDirectProductDihedralGroup15,Symm3

G1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,142,133,124,115,106,97,8,16,17,16,17,18

(11)

ifactorGroupOrderG

22325

(12)

CHallSystemG

C1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,142,133,124,115,106,97,8,16,17,16,17,18,1,6,112,7,123,8,134,9,145,10,15,1,7,13,4,102,8,14,5,113,9,15,6,12,16,17,18,1,10,4,13,72,11,5,14,83,12,6,15,9,17,18,1,72,63,58,159,1410,1311,12,1,11,62,12,73,13,84,14,95,15,10,16,17,16,17,18,1,34,155,146,137,128,119,10,1,7,13,4,102,8,14,5,113,9,15,6,12,1,6,112,7,123,8,134,9,145,10,15,16,17,18,1,132,123,114,105,96,814,15,17,18,

(13)

mapGroupOrder,C

1,4,5,9,20,36,45,180

(14)

Since GL2,4 is an insoluble group, attempting to compute a Hall system for this group causes an exception to be raised.

HallSystemGL2,4

Error, (in GroupTheory:-HallSystem) group must be soluble

IsSolubleGL2,4

false

(15)

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[CyclicGroup]

GroupTheory[DihedralGroup]

GroupTheory[DirectProduct]

GroupTheory[FrobeniusGroup]

GroupTheory[GeneralLinearGroup]

GroupTheory[GroupOrder]

GroupTheory[IsSoluble]

GroupTheory[SymmetricGroup]

GroupTheory[WreathProduct]

ifactor

map

with