GeneralOrthogonalGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : GeneralOrthogonalGroup

GroupTheory

  

GeneralOrthogonalGroup

  

construct a permutation group isomorphic to a general orthogonal group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

GeneralOrthogonalGroup(d, n, q)

GO(d, n, q)

Parameters

d

-

0, 1 or -1

n

-

a positive integer

q

-

power of a prime number

Description

• 

The general orthogonal group GOd,n,q is the set of all n×n matrices over the field with q elements that respect a non-singular quadratic form. The value of d must be 0 for odd n, or 1 or −1 for even n.

• 

The GeneralOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the general orthogonal group GOd,n,q .

• 

If the argument q is not a prime power (and is non-numeric), then a symbolic group representing GOd,n,q  is returned.

• 

The command GO(d, n, q) is provided as an alias.

• 

In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.

Examples

withGroupTheory:

GGeneralOrthogonalGroup0,7,2

GGO0,7,2

(1)

GeneratorsG

1,2,3,4,5,76,8,11,15,21,279,12,16,22,29,3810,13,18,23,31,4114,19,24,33,44,3417,20,2526,35,45,53,32,4228,36,4730,39,50,56,61,5837,4840,51,46,54,59,6249,55,60,63,52,57,5,67,98,1011,1413,1715,2018,1921,2622,2823,3024,3225,3429,3731,4033,4336,4638,4139,4942,4445,5248,5153,5857,6259,61

(2)

GGeneralOrthogonalGroup1,4,5

GGO1,4,5

(3)

GroupOrderG

28800

(4)

GGeneralOrthogonalGroup1,4,5

GGO-1,4,5

(5)

DegreeG

104

(6)

GroupOrderG

31200

(7)

GGeneralOrthogonalGroup0,3,5

GGO0,3,5

(8)

CharacterTableG

OrderClassPolynomialG,x

24x10+60x6+24x5+60x4+20x3+51x2+x

(9)

DerivedSeriesG

GO0,3,5GO0,3,5,GO0,3,5

(10)

HypercentreG

1,42,83,95,156,167,1710,2211,1412,1813,2319,2420,21

(11)

IsMalnormalSylowSubgroup2,G,G

false

(12)

GroupOrderPCore2,G

2

(13)

IsMalnormalSylowSubgroup3,G,G

false

(14)

IsMalnormalSylowSubgroup5,G,G

false

(15)

GroupOrderGeneralOrthogonalGroup0,7,3

18341406720

(16)

GroupOrderGeneralOrthogonalGroup1,8,2

348364800

(17)

GroupOrderGeneralOrthogonalGroup1,8,2

394813440

(18)

GroupOrderGeneralOrthogonalGroup1,4,q

igcd2,q1igcd2,qq2q2+1q21

(19)

GroupOrderGeneralOrthogonalGroup1,4,q

igcd2,q1igcd2,qq2q212

(20)

Compatibility

• 

The GroupTheory[GeneralOrthogonalGroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

• 

The GroupTheory[GeneralOrthogonalGroup] command was updated in Maple 2020.

See Also

GroupTheory[Degree]

GroupTheory[GeneralLinearGroup]

GroupTheory[GroupOrder]

GroupTheory[SpecialOrthogonalGroup]