DecomposeDessin - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : DecomposeDessin

GroupTheory

  

FindDessins

  

find all dessins d'enfants with a specified branch pattern

  

DecomposeDessin

  

find all decompositions of a Belyi map represented by a dessin

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

FindDessins( B0, B1, Binf )

DecomposeDessin( d, L, Gr )

Parameters

B0, B1, Binf

-

three lists of positive integers, each with the same sum n

d

-

list [ g0, g1 ] representing a conjugacy class of 3-constellations or, equivalently, a dessin

L

-

(optional) name

Gr

-

(optional) name

Description

• 

Let n be a positive integer. A 3-constellation of degree n is a triplet g0,g1,g of elements of Snthat generate a transitive subgroup of Sn and satisfy g0g1g=1.

• 

Two 3-constellations g0,g1,g, h0,h1,h are conjugated if there exists τ in Sn with τgiτ−1=hi for each i in 0,1, (or, equivalently, each i in 0,1).

• 

The branch pattern of g0,g1,g is a triplet B0,B1,B where Bi is a partition of n giving the cycle-structure of gi. We include 1-cycles so FindDessins can find n by taking the sum of the entries of each Bi.

• 

Given B0, B1, Binf as input, FindDessins computes one representative from every conjugacy class of 3-constellations with branch pattern (B0, B1, Binf). Each 3-constellation g0,g1,g will be represented by the list g0,g1, since g can be computed as g0g1−1.

• 

A conjugacy class of 3-constellations corresponds 1-1 with a dessin d'enfant, as well as with a Belyi map (up to equivalence). A Belyi map is a holomorphic function from a compact Riemann surface to the Riemann sphere that only ramifies above {0,1,infinity}. So we can count how many dessins, or how many Belyi maps, exists for a given branch pattern by counting the output of FindDessins.

• 

FindDessins implements the strategy of Section 4 in arXiv:1604.08158 with a number of additions. Progress is reported during the computation by setting infolevel['FindDessins'] to 1 or 2.

Examples

Suppose we want to know if there exists a Belyi map f whose branch pattern above 0, 1,  is [1$39], [2$14], [7$4]. This means that f should have 1 root of order 1 and 9 roots of order 3, f1 should have 14 roots of order 2, f should have 4 poles of order 7, and f should be unramified outside of {0,1,infinity}. We can determine if such f exist (and if so, how many) as follows.

withGroupTheory:

B1,`$`3,9,`$`2,14,`$`7,4

B1,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,7,7,7,7

(1)

SFindDessins1,`$`3,9,`$`2,14,`$`7,4:NumberOfDessinsnopsS

NumberOfDessins1

(2)

Found 1 conjugacy class of 3-constellations (i.e. 1 dessin), so there exists a Belyi map (unique up to equivalence) with branch pattern B.

dS1

d2,3,45,6,78,9,1011,12,1314,15,1617,18,1920,21,2223,24,2526,27,28,1,23,54,86,117,149,1710,2012,2213,1615,2318,2119,2624,2725,28

(3)

Now let's check that d = [ g0, g1 ] has branch pattern B.

g0d1

g02,3,45,6,78,9,1011,12,1314,15,1617,18,1920,21,2223,24,2526,27,28

(4)

g0 indeed has cycle-structure [1,3$9] (a 1-cycle and 9 3-cycles)

g1d2

g11,23,54,86,117,149,1710,2012,2213,1615,2318,2119,2624,2725,28

(5)

g1 has cycle-structure [2$14] (14 2-cycles)

gg0·g11

g1,4,10,22,11,5,23,7,16,12,21,17,86,13,15,25,27,23,149,19,28,24,26,18,20

(6)

Has cycle structure [7$4] (4 7-cycles).

DecomposeDessind

indecomposable

(7)

The Belyi map for d is indecomposable.

Example with decompositions

SFindDessins`$`3,10,`$`2,15,`$`6,5

S1,2,34,5,67,8,910,11,1213,14,1516,17,1819,20,2122,23,2425,26,2728,29,30,1,42,73,85,106,119,1312,1614,1915,2017,2218,2321,2524,2826,2927,30,1,2,34,5,67,8,910,11,1213,14,1516,17,1819,20,2122,23,2425,26,2728,29,30,1,42,73,105,136,168,199,2211,2012,1814,2515,2817,2621,2923,2724,30

(8)

NumberOfDessinsnopsS

NumberOfDessins2

(9)

dS1

d1,2,34,5,67,8,910,11,1213,14,1516,17,1819,20,2122,23,2425,26,2728,29,30,1,42,73,85,106,119,1312,1614,1915,2017,2218,2321,2524,2826,2927,30

(10)

DecomposeDessind

F = F1(deg 2) = F2(deg 2) = F3(deg 2) = F4(deg 2) = F5(deg 2) = F6(deg 5) = F7(deg 10) = F8(deg 15)

(11)

The Belyi map for S[1] has 8 decompositions. With additional arguments, DecomposeDessin returns a list with information on each Fn, and a decomposition graph.

DecomposeDessind,L,Gr

F = F1(deg 2) = F2(deg 2) = F3(deg 2) = F4(deg 2) = F5(deg 2) = F6(deg 5) = F7(deg 10) = F8(deg 15)

(12)

L5

F5: P1-->P1,F5 = F7(deg 5),Degree=15,BranchPattern = ([3$5], [1$3, 2$6], [3, 6$2]),Dessin=1,2,34,5,67,8,910,11,1213,14,15,3,45,76,89,1011,1312,14

(13)

L6

F6: EllipticCurve-->P1,F6 = F7(deg 2) = F8(deg 3),Degree=6,BranchPattern = ([3$2], [2$3], [6]),Dessin=1,2,34,5,6,1,42,53,6

(14)

Decomposition graph:

Gr

F1 .. F5 have the same dessin so they represent the same Belyi map (of degree = 15). The reason for listing all five is because their degree = 2 decomposition factors differ.

Compatibility

• 

The GroupTheory[FindDessins] and GroupTheory[DecomposeDessin] commands were introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory

http://oeis.org/A112948