Iterator - Maple Help

Online Help

All Products    Maple    MapleSim


Iterator

The Iterator package provides Maple objects that implement fast methods for iterating over discrete structures .

 

with(Iterator)

BinaryGrayCode,BinaryTrees,BoundedComposition,CartesianProduct,Chase,Combination,Count,FillRucksack,Inversion,MixedRadix,MixedRadixGrayCode,MixedRadixTuples,MultiPartition,NearPerfectParentheses,NestedParentheses,OrientedForests,Partition,PartitionFixedSize,Permute,Product,Reverse,RevolvingDoorCombination,Select,SetPartitionFixedSize,SetPartitions,SplitRanks,TopologicalSorts,Trees

(1)

 

Integer Divisors

Octacode

Integer Divisors

An efficient way to compute all divisors, given a prime factorization b__1e__1b__2e__2...b__me__m, is to loop through the exponents with a mixed-radix Gray code with radices r__j=e__j+1, and then multiply or divide the previously computed divisor by b__j, depending on whether the j-th exponent is increased or decreased.

p := 12*5*8*24*13*9;

p1347840

(1.1)

f := ifactors(p)[2];

f2,8,3,4,5,1,13,1

(1.2)

Extract the lists of the bases and exponents.

b := map2(op,1,f);
e := map2(op,2,f);

b2,3,5,13

e8,4,1,1

(1.3)

Create a MixedRadixGrayCode iterator using the append_change option so the last index contains a signed value of the index that changed (the initial value of the index is 0).

G := MixedRadixGrayCode(e +~ 1, append_change):

Get the position of the index that indicates the change. The output method of the iterator object, G, returns the Array that is used to output the results.

n := upperbound(output(G)):

Update and return the divisor (d) given g, a vector whose n-th slot stores the index of the prime that changed, with a positive value indicating an increase by one and a negative value, a decrease by one.

update_d := proc(g,b,n)
global d;
local i;
    i := g[n];
    if   i < 0 then d := d/b[-i];
    elif i > 0 then d := d*b[+i];
    else            d := 1;
    end if;
    return d;
end proc:

Use the iterator and procedure to compute all divisors.

[seq(update_d(g,b,n), g = G)];

1&comma;2&comma;4&comma;8&comma;16&comma;32&comma;64&comma;128&comma;256&comma;768&comma;384&comma;192&comma;96&comma;48&comma;24&comma;12&comma;6&comma;3&comma;9&comma;18&comma;36&comma;72&comma;144&comma;288&comma;576&comma;1152&comma;2304&comma;6912&comma;3456&comma;1728&comma;864&comma;432&comma;216&comma;108&comma;54&comma;27&comma;81&comma;162&comma;324&comma;648&comma;1296&comma;2592&comma;5184&comma;10368&comma;20736&comma;103680&comma;51840&comma;25920&comma;12960&comma;6480&comma;3240&comma;1620&comma;810&comma;405&comma;135&comma;270&comma;540&comma;1080&comma;2160&comma;4320&comma;8640&comma;17280&comma;34560&comma;11520&comma;5760&comma;2880&comma;1440&comma;720&comma;360&comma;180&comma;90&comma;45&comma;15&comma;30&comma;60&comma;120&comma;240&comma;480&comma;960&comma;1920&comma;3840&comma;1280&comma;640&comma;320&comma;160&comma;80&comma;40&comma;20&comma;10&comma;5&comma;65&comma;130&comma;260&comma;520&comma;1040&comma;2080&comma;4160&comma;8320&comma;16640&comma;49920&comma;24960&comma;12480&comma;6240&comma;3120&comma;1560&comma;780&comma;390&comma;195&comma;585&comma;1170&comma;2340&comma;4680&comma;9360&comma;18720&comma;37440&comma;74880&comma;149760&comma;449280&comma;224640&comma;112320&comma;56160&comma;28080&comma;14040&comma;7020&comma;3510&comma;1755&comma;5265&comma;10530&comma;21060&comma;42120&comma;84240&comma;168480&comma;336960&comma;673920&comma;1347840&comma;269568&comma;134784&comma;67392&comma;33696&comma;16848&comma;8424&comma;4212&comma;2106&comma;1053&comma;351&comma;702&comma;1404&comma;2808&comma;5616&comma;11232&comma;22464&comma;44928&comma;89856&comma;29952&comma;14976&comma;7488&comma;3744&comma;1872&comma;936&comma;468&comma;234&comma;117&comma;39&comma;78&comma;156&comma;312&comma;624&comma;1248&comma;2496&comma;4992&comma;9984&comma;3328&comma;1664&comma;832&comma;416&comma;208&comma;104&comma;52&comma;26&comma;13

(1.4)

Octacode

 

The octacode, O__8, a linear self-dual code of length 8 over &integers;__4 and minimal Lee distance 6, can be computed from the generator polynomial

gx3&plus;2x2&plus;x1&colon;

as O__8&equals;u&equals;gv k&equals;07z__u__k  with v&equals;k&equals;03v__kxk , u&equals;k&equals;06u__kxk , gv mod 4&equals;u, with u__7 selected so k&equals;07u__k&equals;0 mod 4 and 0v__0&comma;v__1&comma; v__2&comma; v__3<4.

 

Assign a procedure that computes one term of the sum, corresponding to the vector v&equals;v__0&comma;v__1&comma;v__2&comma;v__3.

 

pterm := proc(v)
local u,u7;
global g, x, z;
    u := [coeffs(collect(g*add(v[k+1]*x^k, k=0..3),x),x)];
    u7 := modp(-add(u),4);
    mul(z[modp(u,4)],u=u) * z[0]^(7-numelems(u)) * z[u7];
 end proc:  

 

Use the MixedRadixTuples iterator and sum over all values of v.

 

V := Iterator:-MixedRadixTuples([4,4,4,4]):

O__8 := add(pterm(v), v = V);

O__8z08&plus;14z04z24&plus;56z03z13z2z3&plus;56z03z1z2z33&plus;56z0z13z23z3&plus;56z0z1z23z33&plus;z18&plus;14z14z34&plus;z28&plus;z38

(2.1)