 Matrix Builder - Maple Help

Student[LinearAlgebra][MatrixBuilder] - interactive matrix builder Calling Sequence MatrixBuilder()     MatrixBuilder(A,minrc,maxrc,options) Parameters

 A - Matrix (optional) Matrix to modify minrc - posint (optional) minimum number or rows and columns maxrc - posint (optional) maximum number of rows and columns options - (optional) equation(s) of the form keyword = truefalse, where keyword is either 'square', 'augmented', 'sqrstatic', or 'augstatic' Description

 • The MatrixBuilder command provides an interactive interface for the creation of Matrices up to 5 x 5 in dimension. These matrices can be visualized as augmented matrices. The maplet provides a view of the matrix A, a variable view of $A·x$ or $A·x=b$ in the case of an augmented matrix, and text boxes to enter the entries. When closed, the maplet returns the created matrix.
 • The maplet has drop-down lists to choose the number of rows and columns of the matrix. The matrix entries are typed in the text boxes.
 • There are check boxes that determine whether the matrix should be considered square, and/or augmented. If square, the number of columns is controlled by the number of rows. If augmented, the number of columns of the augmented matrix must be greater than one.
 • The Matrix A can be used to initialize the MatrixBuilder. The parameters minrc and maxrc can only be positive integers from 1 to 5 and provide the minimum and maximum number of rows and columns of the matrix. If A is provided and its dimensions do not satisfy these constraints, an error is returned. Also, if parameters are specified, the first one has to be the matrix A. Examples

 > $\mathrm{with}\left(\mathrm{Student}\left[\mathrm{LinearAlgebra}\right]\right):$
 > $\mathrm{MatrixBuilder}\left(\right)$
 > $A≔\mathrm{Matrix}\left(\left[\left[61,22,-41\right],\left[96,-81,24\right],\left[53,-99,-65\right]\right]\right)$
 > $\mathrm{MatrixBuilder}\left(A\right)$
 > $\mathrm{MatrixBuilder}\left(A,2,4,\mathrm{square}=\mathrm{true},\mathrm{sqrstatic}=\mathrm{true},\mathrm{augstatic}=\mathrm{true}\right)$
 > $A≔\mathrm{Matrix}\left(\left[\left[61,22,-41,-18\right],\left[96,-81,24,6\right],\left[53,-99,-65,50\right]\right]\right)$
 > $\mathrm{MatrixBuilder}\left(A,2,5,\mathrm{square}=\mathrm{false},\mathrm{augmented}=\mathrm{true},\mathrm{augstatic}=\mathrm{true}\right)$ See Also