Generate random sample drawn from the noncentral Beta distribution.
>

$\mathrm{with}\left(\mathrm{Statistics}\right)\:$

>

$X\u2254\mathrm{RandomVariable}\left(\mathrm{NonCentralBeta}\left(3\,10\,2\right)\right)\:$

>

$A\u2254\mathrm{Sample}\left(X\,{10}^{6}\right)\:$

Compute the five point summary of the data sample.
>

$\mathrm{FivePointSummary}\left(A\right)$

$\left[\begin{array}{c}{\mathrm{minimum}}{=}{0.00284705659174078}\\ {\mathrm{lowerhinge}}{=}{0.188221218565660}\\ {\mathrm{median}}{=}{0.271179303591104}\\ {\mathrm{upperhinge}}{=}{0.364759629644148}\\ {\mathrm{maximum}}{=}{0.855336805054773}\end{array}\right]$
 (1) 
Compute the mean, standard deviation, skewness, kurtosis, etc.
>

$\mathrm{DataSummary}\left(A\right)$

$\left[\begin{array}{c}{\mathrm{mean}}{=}{0.282220601028456}\\ {\mathrm{standarddeviation}}{=}{0.125176906233528}\\ {\mathrm{skewness}}{=}{0.440322599667426}\\ {\mathrm{kurtosis}}{=}{2.84590882372508}\\ {\mathrm{minimum}}{=}{0.00284705659174078}\\ {\mathrm{maximum}}{=}{0.855336805054773}\\ {\mathrm{cumulativeweight}}{=}{1.000000}{\times}{{10}}^{{6}}\end{array}\right]$
 (2) 
Estimate the mode.
>

$\mathrm{Mode}\left(A\right)$

${0.237418113813262}$
 (3) 
Compute the second moment about .3.
>

$\mathrm{Moment}\left(A\,2\,\mathrm{origin}=0.3\right)$

${0.0159853492127288}$
 (4) 
Compute mean, trimmed mean and winsorized mean.
>

$\mathrm{Mean}\left(A\right),\mathrm{TrimmedMean}\left(A\,1\,99\right),\mathrm{WinsorizedMean}\left(A\,1\,99\right)$

${0.282220601028476}{,}{0.280991773683514}{,}{0.281923266592907}$
 (5) 
Compute frequency table for A.
>

$\mathrm{FrequencyTable}\left(A\,\mathrm{range}=0..1\,\mathrm{bins}=5\right)$

$\left[\begin{array}{ccccc}{0.}{..}{0.200000000000000}& {283732.}& {28.37320000}& {283732.}& {28.37320000}\\ {0.200000000000000}{..}{0.400000000000000}& {536939.}& {53.69390000}& {820671.}& {82.06710000}\\ {0.400000000000000}{..}{0.600000000000000}& {168880.}& {16.88800000}& {989551.}& {98.95510000}\\ {0.600000000000000}{..}{0.800000000000000}& {10420.}& {1.042000000}& {999971.}& {99.99710000}\\ {0.800000000000000}{..}{1.}& {29.}& {0.002900000000}& {1.000000}{\times}{{10}}^{{6}}& {100.}\end{array}\right]$
 (6) 