PolynomialMapPreimage - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[ConstructibleSetTools]

  

PolynomialMapPreimage

  

compute the preimage of a variety under a polynomial map

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

PolynomialMapPreimage(F, PM, R, S)

PolynomialMapPreimage(F, H, PM, R, S)

PolynomialMapPreimage(CS, PM, R, S)

Parameters

F

-

list of polynomials of S

PM

-

list of polynomials in R

R

-

polynomial ring (source)

S

-

polynomial ring (target)

H

-

list of polynomials in R

CS

-

constructible set

Description

• 

The command PolynomialMapPreimage(F, PM, R, S) returns a constructible set cs over R, which is the preimage of the variety V(F) under the polynomial map PM.

• 

The command PolynomialMapPreimage(F, H, PM, R, S) returns a constructible set cs over R, which is the preimage of the difference of the variety V(F) by the variety VH under the polynomial map PM.

• 

The command PolynomialMapPreimage(CS, PM, R, S) returns a constructible set cs over R, which is the preimage of the constructible set CS under the polynomial map PM.

• 

Both rings R and S should be over the same ground field.

• 

The variable sets of R and S should be disjoint.

• 

This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form PolynomialMapPreimage(..) only after executing the command with(RegularChains[ConstructibleSetTools]).  However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][PolynomialMapPreimage](..).

Examples

withRegularChains:

withConstructibleSetTools:

RPolynomialRingx,y,z

Rpolynomial_ring

(1)

SPolynomialRings,t

Spolynomial_ring

(2)

Note that the polynomial map should be a list of polynomials of R. Also the number of polynomials in PM equals the number of variables of S.

MPx2,y2

MPx2,y2

(3)

Fs1,t1

Fs1,t1

(4)

csPolynomialMapPreimageF,MP,R,S

csconstructible_set

(5)

Infocs,R

x+1,y1,1,x1,y1,1,x+1,y+1,1,x1,y+1,1

(6)

See Also

ConstructibleSet

ConstructibleSetTools

Difference

MakePairwiseDisjoint

PolynomialMapImage

Projection

RegularChains