>

$\mathrm{with}\left(\mathrm{QuantumChemistry}\right)\:$

Let us plot the natural transition orbitals of the $\mathrm{uracil}$ molecule computed with the HartreeFock (TDHF) method
First, we define the molecule's geometry with the MolecularGeometry command
>

$\mathrm{molecule}\u2254\mathrm{MolecularGeometry}\left(''uracil''\right)semi;$

${\mathrm{molecule}}{\u2254}\left[\left[{''O''}{\,}{2.32640000}{\,}{0.96510000}{\,}{0.00010000}\right]{\,}\left[{''O''}{\,}{\mathrm{2.29720000}}{\,}{1.02320000}{\,}{0.00050000}\right]{\,}\left[{''N''}{\,}{0.01800000}{\,}{1.01990000}{\,}{\mathrm{0.00020000}}\right]{\,}\left[{''N''}{\,}{1.16370000}{\,}{\mathrm{1.02210000}}{\,}{0.00010000}\right]{\,}\left[{''C''}{\,}{1.25240000}{\,}{0.36290000}{\,}{0}\right]{\,}\left[{''C''}{\,}{\mathrm{1.23150000}}{\,}{0.41410000}{\,}{\mathrm{0.00040000}}\right]{\,}\left[{''C''}{\,}{\mathrm{0.02680000}}{\,}{\mathrm{1.69550000}}{\,}{0.00020000}\right]{\,}\left[{''C''}{\,}{\mathrm{1.20490000}}{\,}{\mathrm{1.06760000}}{\,}{\mathrm{0.00020000}}\right]{\,}\left[{''H''}{\,}{0.03820000}{\,}{2.03570000}{\,}{\mathrm{0.00010000}}\right]{\,}\left[{''H''}{\,}{2.01870000}{\,}{\mathrm{1.57020000}}{\,}{0.00040000}\right]{\,}\left[{''H''}{\,}{\mathrm{2.14430000}}{\,}{\mathrm{1.60630000}}{\,}{\mathrm{0.00020000}}\right]{\,}\left[{''H''}{\,}{0.04690000}{\,}{\mathrm{2.77610000}}{\,}{0.00040000}\right]\right]$
 (1) 
Second, we plot uracil with the PlotMolecule command
>

$\mathrm{PlotMolecule}\left(\mathrm{molecule}\right)\;$

Finally, we plot the pair of transition orbitals associated with the first singular value of the groundtofirstexcitedstate transition
>

$\mathrm{TransitionOrbitalPlot}\left(\mathrm{molecule}\,\mathrm{state}\=1\,\mathrm{orbitalindex}\=1\right)\;$

By left clicking on the plot, styles can be customized, and the plot can be exported to a range of image files including PNG and EPS.
Similarly, we plot the pair of transition orbitals associated with the second singular value of the transition
>

$\mathrm{TransitionOrbitalPlot}\left(\mathrm{molecule}\,\mathrm{state}\=1\,\mathrm{orbitalindex}\=2\right)\;$
