NumberTheory - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Numerical Computations : Approximations : Continued Fractions : NumberTheory/ContinuedFractionPolynomial

NumberTheory

  

ContinuedFractionPolynomial

  

simple continued fraction expansions for real roots of a rational polynomial

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ContinuedFractionPolynomial(p, n)

ContinuedFractionPolynomial(p)

ContinuedFractionPolynomial(p, n, root = rootopt)

ContinuedFractionPolynomial(p, root = rootopt)

Parameters

p

-

polynomial with rational or real floating point coefficients

n

-

positive integer

root = rootopt

-

(optional) keyword argument where rootopt is a root of p

Description

• 

The ContinuedFractionPolynomial(p, n) command computes simple continued fraction expansions for the real roots of p, up to the nth term.

• 

For ContinuedFractionPolynomial(p), the simple continued fraction expansions for the real roots of p are calculated up to the 10th term.

• 

If rootopt is not given, then an expansion for each real root is returned. If rootopt is given, then only the expansion for rootopt is returned.

Examples

withNumberTheory:

ContinuedFractionPolynomialx4x34x2+4x+1,20

−2,22,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,18,1,10,−1,1,3,1,3,1,1,1,1,1,1,4,1,1,1,4,1,2,4,5,18,1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,18,1,1,4,1,3,1,1,1,1,1,1,4,1,1,1,4,1,2,4,5,18

(1)

ContinuedFractionPolynomialx22

−2,1,1,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2

(2)

ContinuedFractionPolynomialx22,root=2

1,2,2,2,2,2,2,2,2,2,2

(3)

Compatibility

• 

The NumberTheory[ContinuedFractionPolynomial] command was introduced in Maple 2016.

• 

For more information on Maple 2016 changes, see Updates in Maple 2016.

See Also

NumberTheory

NumberTheory[ContinuedFraction]