VFPDO Object Overloaded Builtins - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Lie Symmetry Method : Commands for PDEs (and ODEs) : LieAlgebrasOfVectorFields : VFPDO : LieAlgebrasOfVectorFields/VFPDO/Builtins

VFPDO Object Overloaded Builtins

overview of overloaded builtins for VFPDO object.

 

Description

Examples

Compatibility

Description

• 

The functionalities of some Maple builtin commands are extended for use on VFPDO object.

• 

The following builtins have been overloaded for this purpose: indets, has, type, hastype

• 

Let Delta be a VFPDO object.

• 

(i) The call type(Delta, t) returns true if t is any of the following types: module, object, anything, appliable and VFPDO. See examples below.

• 

(ii) The calls type(Delta, dependent(x)) and type(Delta, freeof(x)) respectively return true if the differential operator or the independent variables of Delta contain (respectively don't contain) x. See example below.

• 

The indets, has, hastype builtin commands accept a VFPDO object and apply their methods onto the differential operator and the independent variables of the object.

• 

These overloaded builtins are associated with the VFPDO object. For more detail, see Overview of the VFPDO object.

Examples

withLieAlgebrasOfVectorFields:

Construct an VFPDO object from some differential expressions...

XVectorFieldξx,yDx+ηx,yDy,space=x,y

Xξx,yx+ηx,yy

(1)

ΔVFPDOa1diffξx,y,xa2ξx,y,diffηx,y,x,xa12+a22ηx,y,X

ΔX→a1ⅆⅆxXxa2Xx,xxXy+a12a22Xy

(2)

type

typeΔ,VFPDO,typeΔ,object,typeΔ,`module`,typeΔ,appliable

true,true,true,true

(3)

The VFPDO object contains x

typeΔ,dependentx

true

(4)

typeΔ,freeofa1

false

(5)

typeΔ,dependentx,y

true

(6)

indets, has, hastype

indetsΔ

x,y,a1,a2

(7)

hasΔ,a1

true

(8)

hastypeΔ,name

true

(9)

hastypeΔ,list

true

(10)

Compatibility

• 

The VFPDO Object Overloaded Builtins command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

VFPDO (Object overview)

LieAlgebrasOfVectorFields[VFPDO]