RifReduce - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Lie Symmetry Method : Commands for PDEs (and ODEs) : LieAlgebrasOfVectorFields : LHPDE : LieAlgebrasOfVectorFields/LHPDE/RifReduce

RifReduce

reduce a LHPDEs system to a rif-reduced form

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

RifReduce( obj, vars, opts)

Parameters

obj

-

a LHPDE object

vars

-

(optional) list (or list of lists) of main dependent variables

opts

-

(optional) sequence of options to control the behaviour of DEtools[rifsimp]

Description

• 

The RifReduce method rif-reduces a LHPDE object. It returns a LHPDE object in a rif-reduced from with respect to a given ranking.

• 

This is a front-end to the existing Maple command DEtools[rifsimp].

• 

The optional arguments will be passed down to DEtools[rifsimp]. In other words, If S is a LHPDE object then RifReduce(S, vars, opts) is equivalent to DEtools[rifsimp](GetSystem(S), vars, opts).

• 

The method is associated with the LHPDE object. For more detail, see Overview of the LHPDE object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,ηx,y

SLHPDEdiffξx,y,x=0,diffηx,y,y=0,diffξx,y,y+diffηx,y,x=0,diffξx,y,y,y=0,diffηx,y,x,x=0

Sξx=0,ηy=0,ξy+ηx=0,ξy,y=0,ηx,x=0,indep=x,y,dep=η,ξ

(1)

Rif-reduce S with respect to a default ranking: ordered list of dependent variables

SredRifReduceS

Sredξy,y=0,ηx=ξy,ξx=0,ηy=0,indep=x,y,dep=η,ξ

(2)

GetRankingSred

η,ξ

(3)

Rif-reduce S with respect to a given ranking

Sred1RifReduceS,ξ,η

Sred1ξx=0,ξy=ηx,ηx,x=0,ηy=0,indep=x,y,dep=η,ξ

(4)

GetRankingSred1

ξ,η

(5)

Compatibility

• 

The RifReduce command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LHPDE (Object overview)

LieAlgebrasOfVectorFields[LHPDE]

DEtools[rifsimp]

GetRanking