IsSubSpace - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim

IsSubspace

check if one distribution is contained in another

 Calling Sequence IsSubspace(dist1, dist2)

Parameters

 dist1, dist2 - Distribution objects

Description

 • The IsSubspace method decides whether Distribution object dist1 specifies a subspace of tangent space which is contained in the subspace specified by Distribution dist2 at each point in space. It returns the values true or false.
 • This method is associated with the Distribution object. For more detail see Overview of the Distribution object.

Examples

 > $\mathrm{with}\left(\mathrm{LieAlgebrasOfVectorFields}\right):$

Build vector fields...

 > $T≔\mathrm{VectorField}\left({\mathrm{D}}_{z},\mathrm{space}=\left[x,y,z\right]\right)$
 ${T}{≔}\frac{{ⅆ}}{{ⅆ}{z}}$ (1)
 > $R≔\mathrm{VectorField}\left(-y{\mathrm{D}}_{x}+x{\mathrm{D}}_{y},\mathrm{space}=\left[x,y,z\right]\right)$
 ${R}{≔}{-}{y}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{x}{}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right)$ (2)

Construct the associated distribution...

 > $\mathrm{Σ}≔\mathrm{Distribution}\left(T,R\right)$
 ${\mathrm{\Sigma }}{≔}\left\{{-}\frac{{y}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right)}{{x}}{+}\frac{{ⅆ}}{{ⅆ}{y}}{,}\frac{{ⅆ}}{{ⅆ}{z}}\right\}$ (3)
 > $\mathrm{Gamma}≔\mathrm{Distribution}\left(T+R\right)$
 ${\mathrm{Γ}}{≔}\left\{{-}{y}{}\left(\frac{{ⅆ}}{{ⅆ}{x}}\right){+}{x}{}\left(\frac{{ⅆ}}{{ⅆ}{y}}\right){+}\frac{{ⅆ}}{{ⅆ}{z}}\right\}$ (4)

Test containment...

 > $\mathrm{IsSubspace}\left(\mathrm{Gamma},\mathrm{Σ}\right)$
 ${\mathrm{true}}$ (5)
 > $\mathrm{IsSubspace}\left(\mathrm{Σ},\mathrm{Gamma}\right)$
 ${\mathrm{false}}$ (6)

Compatibility

 • The IsSubspace command was introduced in Maple 2020.
 • For more information on Maple 2020 changes, see Updates in Maple 2020.