GroupTheory
SylowBasis
construct a Sylow basis for a finite soluble group
Calling Sequence
Parameters
Description
Examples
Compatibility
SylowBasis( G )
G
-
a soluble permutation group
Let G be a finite soluble group. A Sylow basis for G is a collection B of Sylow subgroups of G, one for each prime divisor of the order of G, such that PQ=QP, for each pair P,Q of Sylow subgroups in B.
The existence of a Sylow basis for G is equivalent to the solubility of G.
The SylowBasis( G ) command constructs a Sylow basis for the soluble group G. If the group G is not soluble, then an exception is raised. The group G must be an instance of a permutation group.
with⁡GroupTheory:
G ≔ Alt⁡4
G≔A4
B ≔ SylowBasis⁡G
B≔1,23,4,1,32,4,1,3,2
map⁡GroupOrder,B
4,3
evalb⁡FrobeniusProduct⁡B1,B2,G=FrobeniusProduct⁡B2,B1,G
true
G ≔ DihedralGroup⁡30
G≔D30
B≔1,7,13,19,252,8,14,20,263,9,15,21,274,10,16,22,285,11,17,23,296,12,18,24,30,1,11,212,12,223,13,234,14,245,15,256,16,267,17,278,18,289,19,2910,20,30,1,162,173,184,195,206,217,228,239,2410,2511,2612,2713,2814,2915,30,1,92,83,74,610,3011,2912,2813,2714,2615,2516,2417,2318,2219,21
5,3,4
andseq⁡FrobeniusProduct⁡S1,S2,G=FrobeniusProduct⁡S2,S1,G,S=combinat:-choose⁡B,2
G ≔ FrobeniusGroup⁡300,3
G≔ < a permutation group on 100 letters with 5 generators >
B ≔ SylowBasis⁡G:
25,4,3
SylowBasis⁡PSL⁡4,3
Error, (in GroupTheory:-SylowBasis) group must be soluble
SylowBasis⁡Symm⁡5
The GroupTheory[SylowBasis] command was introduced in Maple 2019.
For more information on Maple 2019 changes, see Updates in Maple 2019.
See Also
combinat[choose]
GroupTheory[AlternatingGroup]
GroupTheory[DihedralGroup]
GroupTheory[FrobeniusGroup]
GroupTheory[FrobeniusProduct]
GroupTheory[IsSoluble]
GroupTheory[PSL]
GroupTheory[SylowSubgroup]
GroupTheory[SymmetricGroup]
Download Help Document
What kind of issue would you like to report? (Optional)