 ProjectiveGeneralUnitaryGroup - Maple Help

Home : Support : Online Help : Mathematics : Group Theory : ProjectiveGeneralUnitaryGroup

GroupTheory

 ProjectiveGeneralUnitaryGroup
 construct a permutation group isomorphic to a projective general unitary group Calling Sequence ProjectiveGeneralUnitaryGroup(n, q) PGU(n, q) Parameters

 n - a positive integer greater than 1 q - power of a prime number Description

 • The projective general unitary group $PGU\left(n,q\right)$ is the quotient of the general unitary group $GU\left(n,q\right)$ by its center.
 • The ProjectiveGeneralUnitaryGroup( n, q ) command returns a permutation group isomorphic to the projective general unitary group of degree $n$ over the field with ${q}^{2}$ elements. In general, this is not a transitive representation.
 • Note that for $n=2$ the groups $PGU\left(n,q\right)$ and $PGL\left(n,q\right)$ are isomorphic, so the latter is returned in this case.
 • The ranges for n and q which are implemented are as follows:

 $n=2$ $q\le 100$ $n=3$ $q\le 5$ $n=4$ $q\le 4$ $n=5,6$ $q=2$

 • If either or both of the arguments n and q are non-numeric, then a symbolic group representing the projective general unitary group is returned.
 • The command PGU( n, q ) is provided as an abbreviation.
 • In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette. Examples

 > $\mathrm{with}\left(\mathrm{GroupTheory}\right):$
 > $\mathrm{ProjectiveGeneralUnitaryGroup}\left(2,13\right)$
 ${\mathbf{PGU}}\left({2}{,}{13}\right)$ (1)
 > $G≔\mathrm{PGU}\left(4,4\right)$
 ${G}{≔}{\mathbf{PGU}}\left({4}{,}{4}\right)$ (2)
 > $\mathrm{GroupOrder}\left(G\right)$
 ${1018368000}$ (3)
 > $\mathrm{IsTransitive}\left(\mathrm{PGU}\left(3,3\right)\right)$
 ${\mathrm{true}}$ (4)
 > $\mathrm{IsPrimitive}\left(\mathrm{PGU}\left(3,3\right)\right)$
 ${\mathrm{true}}$ (5)
 > $\mathrm{GroupOrder}\left(\mathrm{PGU}\left(4,q\right)\right)$
 ${{q}}^{{6}}{}\left({{q}}^{{2}}{-}{1}\right){}\left({{q}}^{{3}}{+}{1}\right){}\left({{q}}^{{4}}{-}{1}\right)$ (6) Compatibility

 • The GroupTheory[ProjectiveGeneralUnitaryGroup] command was introduced in Maple 17.