DifferentialGeometry/Tensor/NullTetrad - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/NullTetrad

Tensor[NullTetrad] - construct a null tetrad from an orthonormal tetrad or from a solder form and a spinor basis

Tensor[OrthonormalTetrad] - construct an orthonormal tetrad from a null tetrad

Calling Sequences

     NullTetrad(OrthTetrad)

     NullTetrad(σ ,SpinBasis)

     OrthonormalTetrad(NullTetrad)

Parameters

   OrthTetrad   - a list of 4 vectors defining an orthonormal tetrad with respect to a metric g with signature 1, 1, 1, 1

   σ            - a solder form with index type ["con", " cov", "cov"]

   SpinBasis    - a list of 2 rank 1 spinors, with spinor inner product = 1

   NullTetrad   - a list of 4 vectors defining a null tetrad with respect to a Lorentzian metric g with signature 1,1,1,1 

 

Description

Examples

See Also

Description

• 

Let g be a metric on a 4-dimensional manifold with signature 1,1,1,1. A list of 4 vectors Et,Ex,Ey,Ez defines an orthonormal tetrad if

 

gEt,Et=1, gEx,Ex=gEy,Ey=gEz,Ez=1,

 

and all other inner products vanish. A list of 4 vectors L,N,M,M defines a null tetrad if L and N are real, M is the complex conjugate of M,

 

gL,N=1,  gM,M=1, 

 

and all other inner products vanish. In particular, the vectors L,N,M,M are all null vectors.

• 

Given an orthonormal tetrad OrthTetrad = Et,Ex,Ey,Ez, the command NullTetrad(OrthTetrad) constructs the null tetrad given by

 

L=12Et+Ez,  N=12Et  Ez, M=12Ex+iEy,  M=12ExiEy .

 

• 

Let sigma be a solder form (index type ["con", " cov", "cov"]), with components σAA'i ,for the metric g. Let οA and ιB be rank 1, unprimed spinors with εABοAιB=1. Let ο and ι be their conjugates (see ConjugateSpinor).  Then the following vectors

 

Li=σAA'iοA οA',   Ni=σAA'iιA ιA',   Mi=σAA'iοAιA',    M i=σAA'iιAοA'

 

 define a null tetrad. This null tetrad is computed with the second calling sequence NullTetrad(sigma, [ο, ι]).

• 

Given a null tetrad NullTetrad =[L,N,M,M], the command OrthonormalTetrad(NullTetrad) constructs the orthonormal tetrad defined by

 

Et=12L+N,  Ex=12M+M, Ey=1i2M M,  Ez=12LN

 

• 

The command DGGramSchmidt can also be used to construct an orthonormal tetrad.

• 

The command GRQuery can be used to check that a given tetrad is a null tetrad or an orthonormal tetrad.

• 

These commands are part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetrad(...) or OrthonormalTetrad(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. They can always be used in the long form DifferentialGeometry:-Tensor:-NullTetrad or DifferentialGeometry:-Tensor:-OrthonormalTetrad.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create manifold M with coordinates t,x,y,z.

DGsetupt,x,y,z,M

frame name: M

(2.1)

 

Define a spacetime metric g on M with signature 1,1,1,1.

M > 

gevalDGdt&tdtdx&tdxdy&tdydz&tdz

g:=dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal tetrad F on M with respect to the metric g. Verify using the command GRQuery.

M > 

FD_t,D_x,D_y,D_z

F:=D_t,D_x,D_y,D_z

(2.3)
M > 

GRQueryF,g,OrthonormalTetrad

true

(2.4)

 

Use the orthonormal tetrad F to construct a null tetrad NT.

M > 

NTNullTetradF

NT:=22D_t+22D_z,22D_t22D_z,22D_x+I22D_y,22D_xI22D_y

(2.5)

 

Verify this result using the command GRQuery.

M > 

GRQueryNT,g,NullTetrad

true

(2.6)

 

It is a simple matter to check directly, using the TensorInnerProduct command, that NT is a null tetrad,

M > 

TensorInnerProductg,NT,NT

 

Example 2.

We use spinors to create a null tetrad. First create a vector bundle EM with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.

DGsetupt,x,y,z,z1,z2,w1,w2,E

frame name: E

(2.7)

 

Define a spacetime metric g2 on M with signature 1,1,1,1.

E > 

g2evalDGdt&tdtdx&tdxdy&tdydz&tdz

g2:=dtdtdxdxdydydzdz

(2.8)

 

Define an orthonormal frame F2 on M with respect to the metric g2.

E > 

F2D_t,D_x,D_y,D_z

F2:=D_t,D_x,D_y,D_z

(2.9)

 

Compute the solder form σ defined by the orthonormal frame F2.

E > 

σSolderFormF2,indextype=con,cov,cov

σ:=22D_tdz1dw1+22D_tdz2dw2+22D_xdz1dw2+22D_xdz2dw1+I22D_ydz1dw2I22D_ydz2dw1+22D_zdz1dw122D_zdz2dw2

(2.10)

 

Define a pair of rank 1 spinors ο and ι. Check that their spinor inner product is 1. Construct the corresponding null tetrad, N2.

E > 

οevalDGD_z1+2D_z2

ο:=D_z1+2D_z2

(2.11)
E > 

ιevalDG2D_z1+5D_z2

ι:=2D_z1+5D_z2

(2.12)
E > 

SpinorInnerProductο,ι

1

(2.13)
E > 

N2NullTetradσ,ο,ι

N2:=522D_t+22D_x322D_z,2922D_t+102D_x2122D_z,62D_t+922D_x+I22D_y42D_z,62D_t+922D_xI22D_y42D_z

(2.14)
E > 

TensorInnerProductg2,N2,N2

 

Example 3.

Convert the null tetrad N2 constructed in Example 2 to an orthonormal tetrad T.

E > 

TOrthonormalTetradN2

T:=17D_t+12D_x12D_z,12D_t+9D_x8D_z,D_y,12D_t8D_x+9D_z

(2.15)

 

Check the result.

E > 

TensorInnerProductg2,T,T

See Also

DifferentialGeometry, Tensor, ConjugateSpinor, DGGramSchmidt, GRQuery, SolderForm, SpinorInnerProduct, TensorInnerProduct