DifferentialGeometry/Tensor/KroneckerDeltaSpinor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/KroneckerDeltaSpinor

Tensor[KroneckerDeltaSpinor] - create the Kronecker delta spinor

Calling Sequences

     KroneckerDeltaSpinor(spinorType, fr)

Parameters

   spinorType - a string, either "spinor" or "barspinor"

   fr         - (optional) the name of a defined frame

 

Description

Examples

See Also

Description

• 

The Kronecker delta spinor is the type 11 spinor whose components in any coordinate system are given by the identity matrix.

• 

The command KroneckerDeltaSpinor(spinorType) returns a Kronecker delta spinor of the type specified by spinorType in the current frame unless the frame is explicitly specified.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form KroneckerDeltaSpinor(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-KroneckerDeltaSpinor.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle M with base coordinates x,y,z,t and fiber coordinates z1,z2,w1,w2.

DGsetupx,y,z,t,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Here are the 2 Kronecker delta spinors one can define:

M > 

K1KroneckerDeltaSpinorspinor

K1:=D_z1dz1+D_z2dz2

(2.2)
M > 

K2KroneckerDeltaSpinorbarspinor

K2:=D_w1dw1+D_w2dw2

(2.3)

 

Define some other manifold N.

M > 

DGsetupx,y,z,t,N

frame name: N

(2.4)

 

The current frame is N. Because there are no fiber variables, one cannot calculate a Kronecker delta spinor in this frame. To now re-calculate the Kronecker delta spinor K1, either use the ChangeFrame command or pass KroneckerDeltaSpinor the frame name M as a second argument.

N > 

KroneckerDeltaSpinorspinor,M

D_z1dz1+D_z2dz2

(2.5)

 

Example 2.

The Kronecker delta spinor defines an identity mapping on spinors of the indicated type. The linear transformation associated to the Kronecker delta spinor K is defined by contracting the covariant index of K against the contravariant index of the spinor S1. We see that the result is S1 so that the linear transformation defined by K is indeed the identity transformation.

M > 

DGsetupx,y,z,t,z1,z2,w1,w2,M

frame name: M

(2.6)
M > 

KKroneckerDeltaSpinorspinor

K:=D_z1dz1+D_z2dz2

(2.7)
M > 

S1evalDGaD_z1+bD_z2

S1:=aD_z1+bD_z2

(2.8)
M > 

S2ContractIndicesS1,K,1,2

S2:=aD_z1+bD_z2

(2.9)

 

See Also

DifferentialGeometry, Tensor, BivectorSolderForm, CanonicalTensors, KroneckerDelta, PermutationSymbol, SolderForm