DifferentialGeometry/Tensor/BelRobinson - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/BelRobinson

Tensor[BelRobinson] - calculate the Bel-Robinson tensor

Calling Sequences

     BelRobinson(g, W, indexlist)

Parameters

   g         - a metric tensor on a 4-dimensional manifold

   W         - (optional) the Weyl tensor of the metric g

   indexlist - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"

 

Description

Examples

See Also

Description

• 

The Bel-Robinson tensor Bijhk is a covariant rank 4 tensor defined in terms of the Weyl tensor Wijhk on a 4-dimensional manifold by (see, for example, Penrose and Rindler Vol. 1)

Bijhk=14WilhmWj   k  l   m12gijWlmhn+gilWmjhn+ gimWjlhnW    klm  n.

The Bel-Robinson tensor is totally symmetric: Bijhk=Bjihk=Bhjik=Bkjhi . The Bel-Robinson tensor is trace-free: gijBijhk=0. If gij is an Einstein metric, that is, Rij=Λgij (where Rij is the Ricci tensor for the metric gij and Λ is a constant), then the covariant divergence of Bel-Robinson vanishes: gil l Bijhk=0.  Here l denotes the covariant derivative with respect to the Christoffel connection for gij.

• 

The keyword argument indexlist = ind allows the user to specify the index structure for the Bel-Robinson tensor. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form Bijhk is returned. The default output is the purely covariant form (as above).

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BelRobinson(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BelRobinson.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a 4-dimensional manifold M and define a metric gon M. The metric shown below is a homogenous Einstein metric (see (12.34) in Stephani, Kramer et al).

DGsetupx,y,z,u,M

frame name: M

(2.1)
M > 

gevalDGexpzdx&tdx+exp2zdy&tdy+dx&sdu3Λdz&tdz

g:=ⅇzdxdx+ⅇ2z2dxdu+ⅇ2zdydy3Λdzdz+ⅇ2z2dudx

(2.2)

 

Calculate the Bel-Robinson tensor for the metric g.  The result is clearly a symmetric tensor.

M > 

BBelRobinsong

B:=Λ2ⅇ2z4dxdxdxdx

(2.3)

 

Use the optional keyword argument indexlist to calculate the contravariant form of the Bel-Robinson tensor.

M > 

B1BelRobinsong,indexlist=con,con,con,con

B1:=4ⅇ10zΛ2D_uD_uD_uD_u

(2.4)

 

The tensor B is trace-free.

hInverseMetricg

h:=2ⅇ2zD_xD_u+ⅇ2zD_yD_yΛ3D_zD_z+2ⅇ2zD_uD_x4ⅇ5zD_uD_u

(2.5)

ContractIndicesh,B,1,1,2,2

0dxdx

(2.6)

 

The covariant divergence of the tensor B1 vanishes.  To check this, first calculate the Christoffel connection C for the metric g and then calculate the covariant derivative of B1.

CChristoffelg

C:=D_xdxdzD_xdzdxD_ydydzD_ydzdy+Λⅇz6D_zdxdxΛⅇ2z6D_zdxduΛⅇ2z3D_zdydyΛⅇ2z6D_zdudx+3ⅇ3zD_udxdz+3ⅇ3zD_udzdxD_udzduD_ududz

(2.7)

nablaB1CovariantDerivativeB1,C

nablaB1:=2Λ3ⅇ8z3D_zD_uD_uD_udx2Λ3ⅇ8z3D_uD_zD_uD_udx2Λ3ⅇ8z3D_uD_uD_zD_udx2Λ3ⅇ8z3D_uD_uD_uD_zdx+24ⅇ10zΛ2D_uD_uD_uD_udz

(2.8)

DivergenceContractIndicesnablaB1,1,5

Divergence:=0D_xD_xD_x

(2.9)

 

The divergence of the Bel-Robinson tensor is not automatically zero; the divergence vanishes when the metric g is an Einstein metric.  To check this, compute the Ricci tensor of g.

RRicciTensorg

R:=Λⅇzdxdx+Λⅇ2z2dxdu+Λⅇ2zdydy3dzdz+Λⅇ2z2dudx

(2.10)
M > 

evalDGRΛg

0dxdx

(2.11)

 

The Weyl tensor, if already calculated, can be used to quickly compute the Bel-Robinson tensor.

WWeylTensorg

W:=Λⅇz2dxdydxdy+Λⅇz2dxdydydx3ⅇz2dxdzdxdz+3ⅇz2dxdzdzdx+Λⅇz2dydxdxdyΛⅇz2dydxdydx+3ⅇz2dzdxdxdz3ⅇz2dzdxdzdx

(2.12)

BelRobinsong,W

Λ2ⅇ2z4dxdxdxdx

(2.13)

See Also

DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, RicciTensor, WeylTensor