Lesson 2: Subalgebras and Series - Maple Help

LieAlgebra Lessons

Lesson 2: Subalgebras and Series

Overview

This lesson is devoted to the calculation of various subalgebras of a given Lie algebra.  You will learn to to do the following:

 – Find the center of a Lie algebra.
 – Find the radical of a Lie algebra.
 – Find the nilradical of a Lie algebra.
 – Find the smallest subalgebras and ideals containing a given set of vectors.
 – Find the centralizer of a set of vectors.
 – Find the normalizer of a subalgebra.
 – Find the generalized center of an ideal.
 – Find the derived algebra of a Lie algebra.
 – Find the derived series of a Lie algebra.
 – Find the lower central series of a Lie algebra.
 – Find the upper central series of a Lie algebra.
 – Find a canonical basis for a subalgebra of a Lie algebra.

Find the center of a Lie algebra

The center of a Lie algebra is the ideal consisting of all vectors which commute with every vector in the Lie algebra.  It is computed with the Center command.

 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 > L := Retrieve("Winternitz", 1, [5, 3], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e3}}\right]$ (2.1)
 > DGsetup(L);
 ${\mathrm{Lie algebra: Alg1}}$ (2.2)

Calculate the center of the Lie algebra Alg1.

 Alg1 > C := Center();
 ${C}{≔}\left[{\mathrm{e2}}{,}{\mathrm{e1}}\right]$ (2.3)

We can check that e1 and e2 are in the center as follows:

 Alg1 > g := [e1, e2, e3, e4, e5];
 ${g}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}\right]$ (2.4)
 Alg1 > Matrix(2, 5, (i, j) -> LieBracket(C[i], g[j]));
 $\left[\begin{array}{ccccc}{0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}\\ {0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}& {0}{}{\mathrm{e1}}\end{array}\right]$ (2.5)

Find the radical of a Lie algebra

The radical of a Lie algebra g is the largest solvable ideal in g.  It is computed with the Radical command.

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Winternitz", 1, [5, 40], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{2}{}{\mathrm{e1}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e3}}\right]{=}{-}{\mathrm{e2}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{2}{}{\mathrm{e3}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{-}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e4}}\right]$ (3.1)
 Alg1 > DGsetup(L);
 ${\mathrm{Lie algebra: Alg1}}$ (3.2)

Calculate the radical of the Lie algebra Alg1.

 ${R}{≔}\left[{\mathrm{e5}}{,}{\mathrm{e4}}\right]$ (3.3)

We can use the Query command to check that R is a solvable ideal.

 Alg1 > Query(R, "Solvable");
 ${\mathrm{true}}$ (3.4)
 Alg1 > Query(R, "Ideal");
 ${\mathrm{true}}$ (3.5)

Find the nilradical of a Lie algebra

The nilradical of a Lie algebra g is the largest nilpotent ideal in g.  It is computed with the Nilradical command.

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 > L := Retrieve("Winternitz", 1, [5, 38], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e3}}\right]$ (4.1)

 > DGsetup(L);
 ${\mathrm{Lie algebra: Alg1}}$ (4.2)
 ${N}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}\right]$ (4.3)

We can use the Query command to check that N is a solvable ideal.

 Alg1 > Query(N, "Nilpotent");
 ${\mathrm{true}}$ (4.4)
 Alg1 > Query(N, "Ideal");
 ${\mathrm{true}}$ (4.5)

Find the smallest subalgebras and ideals containing a given set of vectors

Given a list of vectors S, the commands MinimalSubalgebra and MinimalIdeal return the smallest subalgebra and smallest ideal containing S.

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Turkowski", 1, [7, 5], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{2}{}{\mathrm{e2}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e3}}\right]{=}{-}{2}{}{\mathrm{e3}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e6}}\right]{=}{-}{2}{}{\mathrm{e6}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e6}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e6}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e6}}\right]$ (5.1)
 Alg1 > DGsetup(L):

Define a list S of vectors in Alg1.

 Alg1 > S := [e2, e5];
 ${S}{≔}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]$ (5.2)

Find the smallest subalgebra A containing S.  Check that A is a subalgebra in Alg1.

 Alg1 > A := MinimalSubalgebra(S);
 ${A}{≔}\left[{\mathrm{e2}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}\right]$ (5.3)
 Alg1 > Query(A, "Subalgebra");
 ${\mathrm{true}}$ (5.4)

Find the smallest ideal B containing S.  Check that B is an ideal in Alg1.

 Alg1 > B := MinimalIdeal(S);
 ${B}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (5.5)
 Alg1 > Query(B, "Ideal");
 ${\mathrm{true}}$ (5.6)

Find the centralizer of a set of vectors S

The centralizer of a set of vectors S in a Lie algebra is the subalgebra of all vectors which commute with all the vectors in S.  It is computed with the Centralizer command.

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Turkowski", 1, [ 7, 5], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{2}{}{\mathrm{e2}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e3}}\right]{=}{-}{2}{}{\mathrm{e3}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e6}}\right]{=}{-}{2}{}{\mathrm{e6}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e6}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e6}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e6}}\right]$ (6.1)
 Alg1 > DGsetup(L):

Find the centralizer of the set S and check the result.

 Alg1 > S := [e3, e4];
 ${S}{≔}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]$ (6.2)
 Alg1 > C := Centralizer(S);
 ${C}{≔}\left[{\mathrm{e6}}\right]$ (6.3)
 Alg1 > LieBracket(e3,e6), LieBracket(e4,e6);
 ${0}{}{\mathrm{e1}}{,}{0}{}{\mathrm{e1}}$ (6.4)

Find the normalizer of a subalgebra

The normalizer of a subalgebra h is the largest subalgebra k such that h is normal in k, that is, the Lie bracket of any vector in h with any vector in k is a vector back in h.  The normalizer of a subalgebra is calculated with the SubalgebraNormalizer command.

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Turkowski", 1, [7, 5], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{2}{}{\mathrm{e2}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e3}}\right]{=}{-}{2}{}{\mathrm{e3}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e6}}\right]{=}{-}{2}{}{\mathrm{e6}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e6}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e6}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e6}}\right]$ (7.1)
 Alg1 > DGsetup(L);
 ${\mathrm{Lie algebra: Alg1}}$ (7.2)

Check that the span of the vectors S is a subalgebra of Alg1.

 Alg1 > S := [e1, e2, e3];
 ${S}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}\right]$ (7.3)
 Alg1 > Query(S, "Subalgebra");
 ${\mathrm{true}}$ (7.4)

Calculate the normalizer of S in Alg1.

 Alg1 > N := SubalgebraNormalizer(S);
 ${N}{≔}\left[{\mathrm{e7}}{,}{\mathrm{e3}}{,}{\mathrm{e2}}{,}{\mathrm{e1}}\right]$ (7.5)

We can check that S is an ideal in N using the BracketOfSubspaces command and noting that all the vectors in B lie in S.

 Alg1 > B := BracketOfSubspaces(S, N);
 ${B}{≔}\left[{-}{2}{}{\mathrm{e3}}{,}{2}{}{\mathrm{e2}}{,}{\mathrm{e1}}\right]$ (7.6)

Find the generalized center of an ideal

Let h be an ideal in a Lie algebra g.  Then the ideal of vectors k such that [k, g] is contained in h is called the generalized center of h.  Use the GeneralizedCenter command.

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Winternitz", 1, [6, 8], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{\mathrm{e3}}{+}{\mathrm{e5}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e3}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e6}}\right]$ (8.1)
 Alg1 > DGsetup(L):

We check that the subspace spanned by the vectors in h is an ideal.

 Alg1 > h := [e5, e6];
 ${h}{≔}\left[{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (8.2)
 Alg1 > Query(h, "Ideal");
 ${\mathrm{true}}$ (8.3)

Calculate the generalized center of h.

 Alg1 > k := GeneralizedCenter(h);
 ${k}{≔}\left[{\mathrm{e6}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}\right]$ (8.4)

We check that k is an ideal and that [k, g] is a subset of h.

 Alg1 > Query(k, "Ideal");
 ${\mathrm{true}}$ (8.5)
 Alg1 > G := [e1, e2, e3, e4, e5, e6];
 ${G}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (8.6)
 Alg1 > BracketOfSubspaces(k, G);
 $\left[{-}{\mathrm{e6}}\right]$ (8.7)

Find the derived algebra of a Lie algebra

The derived algebra of a Lie algebra g is the ideal spanned by all brackets [x, y], with x and y in g.  This ideal can be computed with the DerivedAlgebra command.

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 > L := Retrieve("Winternitz", 1, [5, 3], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e3}}\right]$ (9.1)
 > DGsetup(L);
 ${\mathrm{Lie algebra: Alg1}}$ (9.2)

We calculate the derived algebra of the Lie algebra Alg1 and check that it is an ideal.

 Alg1 > A := DerivedAlgebra();
 ${A}{≔}\left[{\mathrm{e2}}{,}{\mathrm{e1}}{,}{\mathrm{e3}}\right]$ (9.3)
 Alg1 > Query(A, "Ideal");
 ${\mathrm{true}}$ (9.4)

We can also calculate the derived algebra from its definition using the BracketOfSubspaces command

 Alg1 > G:= [e1, e2, e3, e4, e5];
 ${G}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}\right]$ (9.5)
 Alg1 > BracketOfSubspaces(G, G);
 $\left[{\mathrm{e2}}{,}{\mathrm{e1}}{,}{\mathrm{e3}}\right]$ (9.6)

Find the derived series of a Lie algebra

The derived series of a Lie algebra g is the sequence of ideals D^k(g) in g defined inductively by D^0(g) = g and D^(k + 1)(g) = [D^k(g), D^k(g)].  To find the derived series of a Lie algebra, use the Series command with the argument "Derived".

 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Turkowski", 2, [6, 39], Alg1)[1];
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{-}{\mathrm{e6}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e5}}\right]{=}{-}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{2}{}{\mathrm{e3}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e5}}\right]{=}{-}{\mathrm{e3}}\right]$ (10.1)
 Alg1 > DGsetup(L):

Find the derived series for the current algebra Alg1.

 Alg1 > D0 := Series("Derived");
 ${\mathrm{D0}}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{-}{\mathrm{e6}}{,}{\mathrm{e5}}{,}{-}{\mathrm{e4}}{,}{2}{}{\mathrm{e3}}\right]{,}\left[{-}{\mathrm{e3}}\right]{,}\left[{}\right]\right]$ (10.2)

We can write these subspaces in slightly better form using the CanonicalBasis command.

 Alg1 > G := [e1, e2, e3, e4, e5, e6];
 ${G}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (10.3)
 Alg1 > DS := map(Tools:-CanonicalBasis, D0, G);
 ${\mathrm{DS}}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{\mathrm{e3}}\right]{,}\left[{}\right]\right]$ (10.4)

We can check the validity of the 3rd derived series DS[3] (say) using the value of DS[2], the definition of the derived series, and the BracketOfSubspaces command.

 Alg1 > A := BracketOfSubspaces(DS[2], DS[2]);
 ${A}{≔}\left[{-}{\mathrm{e3}}\right]$ (10.5)

We see visually that the span of A and L[3] agree but this can be checked with the DGequal command.

 Alg1 > Tools:-DGequal(A, DS[3]);
 ${\mathrm{true}}$ (10.6)

The command Series can also be used to calculate the derived series of any subalgebra.  For example, we can calculate the derived series of the subalgebra S.

 Alg1 > S := [e3, e4, e5, e6];
 ${S}{≔}\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (10.7)
 Alg1 > Query(S, "Subalgebra");
 ${\mathrm{true}}$ (10.8)
 Alg1 > Series(S, "Derived");
 $\left[\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{-}{\mathrm{e3}}\right]{,}\left[{}\right]\right]$ (10.9)

Find the lower central series of a Lie algebra

The lower central series of a Lie algebra g is a sequence of ideals L^k(g) in g defined inductively by L^0(g) = g and L^(k + 1)(g) = [g, L^k(g)].  To find the lower central series of a Lie algebra use the Series command with the argument "Lower".

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Turkowski", 2, [6, 39], Alg1)[1];
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{-}{\mathrm{e6}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e5}}\right]{=}{-}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{2}{}{\mathrm{e3}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e5}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e5}}\right]{=}{-}{\mathrm{e3}}\right]$ (11.1)
 Alg1 > DGsetup(L):

Find the lower central series for the current algebra Alg1.

 Alg1 > L0 := Series("Lower");
 ${\mathrm{L0}}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{-}{\mathrm{e6}}{,}{\mathrm{e5}}{,}{-}{\mathrm{e4}}{,}{2}{}{\mathrm{e3}}\right]{,}\left[{\mathrm{e4}}{,}{-}{\mathrm{e5}}{,}{\mathrm{e3}}\right]{,}\left[{-}{\mathrm{e5}}{,}{-}{\mathrm{e4}}{,}{-}{\mathrm{e3}}\right]\right]$ (11.2)

We can write these subspaces in a slightly better form using the CanonicalBasis command.

 Alg1 > G := [e1, e2, e3, e4, e5, e6];
 ${G}{≔}\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (11.3)
 Alg1 > LS := map(Tools:-CanonicalBasis, L0, G);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}{,}{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}\right]{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}\right]\right]$ (11.4)

We can check the validity of the 3rd ideal in the lower central series LS[3] (say) using the value of LS[2], the definition of the lower central series, and the BracketOfSubspaces command.

 Alg1 > A := BracketOfSubspaces(LS[2], G);
 ${A}{≔}\left[{-}{2}{}{\mathrm{e3}}{,}{-}{\mathrm{e5}}{,}{-}{\mathrm{e4}}\right]$ (11.5)

We see visually that the span of A and LS[3] agree but this can be checked with the DGequal command.

 Alg1 > Tools:-DGequal(A, LS[3]);
 ${\mathrm{true}}$ (11.6)

The command Series can also be used to calculate the lower central series of any subalgebra.  As an example, we calculate the lower central series of the subalgebra S.

 Alg1 > S := [e3, e4, e5, e6];
 ${S}{≔}\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (11.7)
 Alg1 > Query(S, "Subalgebra");
 ${\mathrm{true}}$ (11.8)
 Alg1 > Series(S, "Lower");
 $\left[\left[{\mathrm{e3}}{,}{\mathrm{e4}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]{,}\left[{-}{\mathrm{e3}}\right]{,}\left[{}\right]\right]$ (11.9)

Find the upper central series of a Lie algebra

The upper central series of a Lie algebra g is the sequence of ideals C^k(g) in g defined inductively by C^0(g) = GeneralizedCenter(0) and C^(k + 1)(g) = GeneralizedCenter(C^k(g)).  To find the upper central series of a Lie algebra, use the Series command with the argument "Upper".

 Alg1 > with(DifferentialGeometry): with(LieAlgebras): with(Library):

Retrieve a Lie algebra from the DifferentialGeometry Library and initialize it with the DGsetup command.

 Alg1 > L := Retrieve("Winternitz", 1, [6, 8], Alg1);
 ${L}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{\mathrm{e3}}{+}{\mathrm{e5}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e3}}\right]{=}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e6}}\right]$ (12.1)
 Alg1 > DGsetup(L):

Calculate the upper central series.

 Alg1 > CS := Series("Upper");
 ${\mathrm{CS}}{≔}\left[\left[{\mathrm{e6}}{,}{\mathrm{e4}}\right]{,}\left[{\mathrm{e3}}{,}{\mathrm{e6}}{,}{\mathrm{e5}}{,}{\mathrm{e4}}\right]{,}\left[{\mathrm{e5}}{,}{\mathrm{e4}}{,}{\mathrm{e3}}{,}{\mathrm{e2}}{,}{\mathrm{e1}}{,}{\mathrm{e6}}\right]\right]$ (12.2)

Check that the first term in the upper central series is the center C of the Lie algebra and that the second term is the generalized center of C.

 Alg1 > C := Center();
 ${C}{≔}\left[{\mathrm{e4}}{,}{\mathrm{e6}}\right]$ (12.3)
 Alg1 > C1 := GeneralizedCenter(C);
 ${\mathrm{C1}}{≔}\left[{\mathrm{e3}}{,}{\mathrm{e6}}{,}{\mathrm{e5}}{,}{\mathrm{e4}}\right]$ (12.4)

The Series command can also be used to calculate the upper central series of any subalgebra.  For example, we find the upper central series of the subalgebra S.

 Alg1 > S := [e2, e5, e6];
 ${S}{≔}\left[{\mathrm{e2}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}\right]$ (12.5)
 Alg1 > Query(S, "Subalgebra");
 ${\mathrm{true}}$ (12.6)
 Alg1 > Series(S, "Upper");
 $\left[\left[{\mathrm{e6}}\right]{,}\left[{\mathrm{e6}}{,}{\mathrm{e5}}{,}{\mathrm{e2}}\right]\right]$ (12.7)

Ian M. Anderson 2006