GeneratingFunctionToContactVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : JetCalculus : GeneratingFunctionToContactVector

JetCalculus[GeneratingFunctionToContactVector] - find the contact vector field defined by a generating function

Calling Sequences

     GeneratingFunctionToContactVector(S)

Parameters

     S         - a Maple expression

 

Description

Examples

Description

• 

 Let π:E  M be a fiber bundle with 1-dimensional fiber and let π1: J1E  M be 1st order jet space of E. In terms of the usual coordinates xi, u, ui on J1E, the contact form on J1E is C = du  uidxi. A vector field X on J1E which preserves the contact form C, in the sense that ℒXC= λ C, is called an infinitesimal contact transformation or a contact vector field. There is a formula which assigns to each locally defined real-valued function S on J1E a contact vector field XS. The function S is called the generating function for the contact vector field XS. In terms of the local coordinates xi, u, ui , we have S = Sxi, u, ui and

XS = S ui   xi + S  uiS ui  u + Sxi + ui Su   ui .

  For further details see P. J. Olver,  Equivalence, Invariants and Symmetry, page 131.

• 

The command GeneratingFunctionToContactVector(S) returns the contact vector field defined by the function S.

• 

The command GeneratingFunctionToContactVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form GeneratingFunctionToContactVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-GeneratingFunctionToContactVector(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

The formula for the contact vector field in terms of the generating function with 1 independent variable.

DGsetupx,u,J11,1:

J11 > 

PDEtoolsdeclareSx,u,u1,quiet

J11 > 

GeneratingFunctionToContactVectorSx,u,u1

Su1D_x+u1Su1+SD_u+Sx+u1SuD_u1

(2.1)

 

The formula for the contact vector field in terms of the generating function with 2 independent variables.

J11 > 

DGsetupx,y,u,J21,1:

J21 > 

PDEtoolsdeclareSx,y,u,u1,u2,quiet

J21 > 

GeneratingFunctionToContactVectorSx,y,u,u1,u2

Su1D_xSu2D_y+u2Su2u1Su1+SD_u+Sx+u1SuD_u1+Sy+u2SuD_u2

(2.2)

 

The formula for the contact vector field in terms of the generating function with 3 independent variables.

J21 > 

DGsetupx,y,z,u,J31,1:

J31 > 

PDEtoolsdeclareSx,y,z,u,u1,u2,u3,quiet

J31 > 

GeneratingFunctionToContactVectorSx,y,z,u,u1,u2,u3

Su1D_xSu2D_ySu3D_z+u3Su3u2Su2u1Su1+SD_u+Sx+u1SuD_u1+Sy+u2SuD_u2+Sz+u3SuD_u3

(2.3)

 

Example 2.

We choose some specific generating functions and calculate the resulting contact vector fields.

J31 > 

ChangeFrameJ21:

J21 > 

Sx+3y:

J21 > 

GeneratingFunctionToContactVectorS

x+3yD_u+D_u1+3D_u2

(2.4)
J21 > 

Su:

J21 > 

GeneratingFunctionToContactVectorS

uD_u+u1D_u1+u2D_u2

(2.5)
J21 > 

Sau1+bu2:

J21 > 

GeneratingFunctionToContactVectorS

aD_xbD_y

(2.6)

 

Example 3.

Check the properties of the vector field X obtained from  S = uuy2.

J21 > 

Suu22:

J21 > 

XGeneratingFunctionToContactVectorS

X2uu2D_yuu22D_u+u1u22D_u1+u23D_u2

(2.7)

 

X preserves the contact 1-form.

J21 > 

LieDerivativeX,Cu

u22Cu

(2.8)

 

X is the prolongation of its projection to the space of independent and dependent variables.

J21 > 

ΦProjectionTransformation1,0

Φx=x,y=y,u=u

(2.9)
J21 > 

YPushforwardΦ,X

Y2uu2D_yuu22D_u

(2.10)
J21 > 

Y1ProlongY,1

Y12uu2D_yuu22D_u+u1u22D_u1+u23D_u2

(2.11)
J21 > 

Y1&minusX

0D_x

(2.12)

 

Example 4.

We use the commands GeneratingFunctionToContactVector and Flow to find a contact transformation.

J21 > 

Su12+x2:

J21 > 

XGeneratingFunctionToContactVectorS

X2u1D_x+u12+x2D_u+2xD_u1

(2.13)
J21 > 

ΦFlowX,t

Φx=u1sin2t+xcos2t,y=y,u=u12cos2tsin2t4+t2+u1cos2t2xx2cos2tsin2t4+t2+u12cos2tsin2t4+t2+x2cos2tsin2t4+t2u1x+u,u1=u1cos2t+xsin2t,u2=u2

(2.14)

 

Check that Φ is a contact transformation.

J21 > 

PullbackΦ,duu1dxu2dy

u1dxu2dy+du

(2.15)

 

We note that Φ takes on a simple form for t = π4 and that it linearizes the Monge-Ampere equation uxxuyy  uxy2 = 1.

J21 > 

Φ1evalΦ,t=π4

Φ1x=u1,y=y,u=u1x+u,u1=x,u2=u2

(2.16)
J21 > 

Φ2ProlongΦ1,2

Φ2x=u1,y=y,u=u1x+u,u1=x,u2=u2,u1,1=1u1,1,u1,2=u1,2u1,1,u2,2=u1,22u1,1+u2,2

(2.17)
J21 > 

ΔPullbackΦ2,u1,1u2,2u1,221

Δu1,22u1,1+u2,2u1,1u1,22u1,121

(2.18)
J21 > 

simplifyΔ

u2,2+u1,1u1,1

(2.19)

See Also

DifferentialGeometry

JetCalculus

Flow

LieDerivative

ProjectionTransformation

Prolong

Pullback

Pushforward

AssignVectorType