In previous Maple releases, the kernel would automatically expand the product of a complex number with rational coefficients by $\pm \mathrm{\infty}$ or $\pm I\mathrm{\infty}$ into $s\mathrm{\infty}\+t\mathrm{\infty}I$, where $s\,t\in \left\{\mathrm{-1}\,0\,1\right\}$. As of Maple 2018, this returns a product $\left(p\+qI\right)\mathrm{\infty}$ where $p,q$ are coprime integers. For example, both of the following examples used to return $\mathrm{\infty}\+\mathrm{\infty}I$:
$\left({1}{+}{\mathrm{I}}\right){}{\mathrm{\infty}}$
| (1) |
${a}{\u2254}\frac{{4}}{{3}}{-}{2}{}{\mathrm{I}}$
| (2) |
${b}{\u2254}{\mathrm{\infty}}{}{\mathrm{I}}$
| (3) |
$\left({3}{+}{2}{}{\mathrm{I}}\right){}{\mathrm{\infty}}$
| (4) |
The previous behavior can be restored by applying the expand command:
${\mathrm{\infty}}{+}{\mathrm{\infty}}{}{\mathrm{I}}$
| (5) |
${\mathrm{\infty}}{+}{\mathrm{\infty}}{}{\mathrm{I}}$
| (6) |