Student[ODEs][Solve]
Chebyshev
Solve Chebyshev's Equation
Calling Sequence
Parameters
Description
Examples
Compatibility
Chebyshev(ODE, y(x))
ODE
-
a Chebyshev equation
y
name; the dependent variable
x
name; the independent variable
The Chebyshev(ODE, y(x)) command finds the solution of a Chebyshev equation, which is a linear homogeneous ordinary differential equation of the form:
ODE≔−x2+1⁢y''−x⁢y'+p2⁢y=0
with⁡StudentODEsSolve:
ode1≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x+y⁡x=0
ode1≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+y⁡x=0
Chebyshev⁡ode1,y⁡x
y⁡x=_C1⁢−x2+1+_C2⁢x
ode2≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x+4⁢y⁡x=0
ode2≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+4⁢y⁡x=0
Chebyshev⁡ode2,y⁡x
y⁡x=_C1⁢x⁢−x2+1+_C2⁢2⁢x2−1
ode3≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x+9⁢y⁡x=0
ode3≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x+9⁢y⁡x=0
Chebyshev⁡ode3,y⁡x
y⁡x=_C1⁢Typesetting:-_Hold⁡%sin⁡3⁢arccos⁡x+_C2⁢Typesetting:-_Hold⁡%cos⁡3⁢arccos⁡x
ode4≔−x2+1⁢diff⁡y⁡x,x,x−x⁢diff⁡y⁡x,x−25⁢y⁡x=0
ode4≔−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢ⅆⅆxy⁡x−25⁢y⁡x=0
Chebyshev⁡ode4,y⁡x
y⁡x=_C1⁢ⅇ5⁢arccos⁡x+_C2⁢ⅇ−5⁢arccos⁡x
The Student[ODEs][Solve][Chebyshev] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
ChebyshevT
ChebyshevU
dsolve
Student
Student[ODEs]
Download Help Document
What kind of issue would you like to report? (Optional)