Overview of the Physics:-StandardModel package
Description
List of StandardModel Package Commands
References
Compatibility
StandardModel is a Physics's package that implements computational representations for the mathematical objects formulating the Standard Model in particle physics. The package includes field representations for the leptons and quarks, Weinberg's angle, the Higgs boson, the fields and field strengths after breaking symmetries and most of the fields before that, the structure constants FSU3a,band Gell-Mann matrices λa, the electroweak charges and isospins, and also a command, Lagrangian, to retrieve the Lagrangian of the different sectors of the Standard Model like QED, QCD or Electro-Weak, or of all of it.
Loading the package sets things to proceed computing with the model, as the fields and their computational properties, the commutation rules, covariant derivatives, the values of all the constants and matrices involved, the letters representing different kinds of tensor indices etc. Some of these settings, for instance the kinds of letters used to represent different kinds of indices, can be changed using the Physics Setup command.
withPhysics:withStandardModel
⁢_______________________________________________________
Setting lowercaselatin_is letters to represent Dirac spinor indices
Setting lowercaselatin_ah letters to represent SU(3) adjoint representation, (1..8) indices
Setting uppercaselatin_ah letters to represent SU(3) fundamental representation, (1..3) indices
Setting uppercaselatin_is letters to represent SU(2) adjoint representation, (1..3) indices
Setting uppercasegreek letters to represent SU(2) fundamental representation, (1..2) indices
Defined as the electron, muon and tau leptons and corresponding neutrinos: ej , μj , τj , ElectronNeutrinoj , MuonNeutrinoj , TauonNeutrinoj
Defined as the up, charm, top, down, strange and bottom quarks: uj,A , cj,A , tj,A , dj,A , sj,A , bj,A
Defined as gauge tensors: Bμ , 𝔹μ,ν , Aμ , 𝔽μ,ν , Wμ,J , 𝕎μ,ν,J , WPlusFieldμ , WPlusFieldStrengthμ,ν , WMinusFieldμ , WMinusFieldStrengthμ,ν , Zμ , ℤμ,ν , Gμ,a , 𝔾μ,ν,a
Defined as Gell-Mann (Glambda), Pauli (Psigma) and Dirac (Dgamma) matrices: λa , σJ , γμ
Defined as the electric, weak and strong coupling constants: g__e , g__w , g__s
Defined as the charge in units of |g__e| for 1) the electron, muon and tauon, 2) the up, charm and top, and 3) the down, strange and bottom: %q__e = −1, %q__u = 23, %q__d = −13
Defined as the weak isospin for 1) the electron, muon and tauon, 2) the up, charm and top, 3) the down, strange and bottom, and 4) all the neutrinos: %I__e = −12, %I__u = 12, %I__d = −12, %I__n = 12,
You can use the active form without the % prefix, or the 'value' command to give the corresponding value to any of the inert representations %q__e , %q__u , %q__d , %I__e , %I__u , %I__d , %I__n,
⁢Default differentiation variables for d_, D_ and dAlembertian are:⁢X=x,y,z,t
Minkowski spacetime with signatre - - - +
%I__d,%I__e,%I__n,%I__u,%q__d,%q__e,%q__u,BField,BFieldStrength,Bottom,CKM,Charm,Down,ElectromagneticField,ElectromagneticFieldStrength,Electron,ElectronNeutrino,FSU3,Glambda,GluonField,GluonFieldStrength,HiggsBoson,Lagrangian,Muon,MuonNeutrino,Strange,Tauon,TauonNeutrino,Top,Up,WField,WFieldStrength,WMinusField,WMinusFieldStrength,WPlusField,WPlusFieldStrength,WeinbergAngle,ZField,ZFieldStrength,g__e,g__s,g__w
A key observation in this implementation is that, with the exception of Lagrangian, FSU3 representing the structure constants FSU3a,b and Glambda representing the Gell-Mann matrices λa, the package's commands are not actually routines that perform tasks but representations of the physical fields of the model with the mathematical properties set and understood by the Maple system. Once the representations are in place, the actual computations are performed by the Physics package commands, e.g. scattering amplitudes are computed using FeynmanDiagrams, covariant and non-covariant derivatives are computed using D_ and d_, commutators and anticommutators using Commutator and AntiCommutator, and the simplification of tensor indices is performed by the Physics Simplify command. The Lagrangian command is used to retrieve all or part of the Lagrangian of the Standard Model, as shown in the Examples.
The following is a list of available commands.
BField
BFieldStrength
Bottom
CKM
Charm
Down
ElectromagneticField
ElectromagneticFieldStrength
Electron
ElectronNeutrino
FSU3
Glambda
GluonField
GluonFieldStrength
HiggsBoson
Lagrangian
Muon
MuonNeutrino
Strange
Tauon
TauonNeutrino
Top
Up
WField
WFieldStrength
WMinusField
WMinusFieldStrength
WPlusField
WPlusFieldStrength
WeinbergAngle
ZField
ZFieldStrength
g__e
g__s
g__w
%I__d
%I__e
%I__n
%I__u
%q__d
%q__e
%q__u
The electric part of the electroweak charges and isospins of the model are all represented in inert form following the Maple convention: prefixed with the % symbol displayed in gray as in (1). If any of these constants is entered without that prefix you get its actual value; for the electric part of the electroweak charges of the model, in units of g__e, that is q__e = −1, q__u = 23, q__d = 13 respectively for the 1) the electron, muon and tauon, 2) the up, charm and top quarks and 3) the down strange and bottom quarks. For the isospins that is I__e = −12, I__u = 12, I__d = −12, I__n = 12, respectively for 1) the electron, muon and tauon, 2) the up, charm and top, 3) the down, strange and bottom, and 4) all the neutrinos.
The electromagnetic coupling constant g__e is negative, equal to the charge of the electron, and g__s and g__w are respectively the the strong and weak coupling constants. These are the constants that enter as a factor in the gauge term of covariant derivatives, and so in the definition of the gauge field strengths 𝔾μ,ν,a and 𝕎μ,ν,J and in the interaction terms of the Lagrangian.
The CKM command is a representation for the Cabibbo Kobayashi Maskawa matrix.
Further information relevant to the use of these commands is found under Conventions used in the Physics package (spacetime tensors, not commutative variables and functions, quantum states and Dirac notation).
The typesetting of the package's representations for fields and constant follows as much as possible the one in textbooks and works under copy and paste - so that expressions from the output can be reused as input. To transform Maple worksheets using this package into LaTeX files see LaTeX.
Examples
The Leptons, Quarks, Gauge Fields and structure constants of the model
The massless fields of the model are the electromagnetic field A, the gluons G and neutrinos MuonNeutrino,TauonNeutrinoand ElectronNeutrino
Setupmassless
* Partial match of 'massless' against keyword 'masslessfields'
_______________________________________________________
masslessfields=G,MuonNeutrino,TauonNeutrino,A,ElectronNeutrino
The Leptons and Quarks of the model are
StandardModel:-Leptons
e,μ,τ,ElectronNeutrino,MuonNeutrino,TauonNeutrino
StandardModel:-Quarks
u,c,t,d,s,b
The Gauge fields
StandardModel:-GaugeFields
A,𝔽,B,𝔹,W,𝕎,G,𝔾,WMinusField,WMinusFieldStrength,WPlusField,WPlusFieldStrength,Z,ℤ
For readability, omit the functionality of all these fields from the display of formulas that follows (see CompactDisplay) and use the lowercase i instead of the uppercase I to represent the imaginary unit
CompactDisplayStandardModel:-Leptons,StandardModel:-Quarks,StandardModel:-GaugeFields, HiggsBosonX,quiet
interfaceimaginaryunit = i:
The definitions of the gauge fields can be seen as with any other tensor of the Physics package using the keyword definition
ElectromagneticFielddefinition
Aμ=sin⁡WeinbergAngle⁢Wμ3μ3+cos⁡WeinbergAngle⁢Bμ
mapu → udefinition,StandardModel:-GaugeFields
ElectromagneticFieldμ=sin⁡WeinbergAngle⁢WFieldμ,~3+cos⁡WeinbergAngle⁢BFieldμ,ElectromagneticFieldStrengthμ,ν=d_μ⁡ElectromagneticFieldν⁡X,X−d_ν⁡ElectromagneticFieldμ⁡X,X,BFieldμ=BField1BField2BField3BField4,BFieldStrengthμ,ν=d_μ⁡BFieldν⁡X,X−d_ν⁡BFieldμ⁡X,X,WFieldμ,J=WField1,1WField1,2WField1,3WField2,1WField2,2WField2,3WField3,1WField3,2WField3,3WField4,1WField4,2WField4,3,WFieldStrengthμ,ν,J=d_μ⁡WFieldν,J⁡X,X−d_ν⁡WFieldμ,J⁡X,X+g__w⁢LeviCivitaJ,K,L⁢`*`⁡WFieldμ,K⁡X,WFieldν,L⁡X,GluonFieldμ,a=GluonField1,1GluonField1,2GluonField1,3GluonField1,4GluonField1,5GluonField1,6GluonField1,7GluonField1,8GluonField2,1GluonField2,2GluonField2,3GluonField2,4GluonField2,5GluonField2,6GluonField2,7GluonField2,8GluonField3,1GluonField3,2GluonField3,3GluonField3,4GluonField3,5GluonField3,6GluonField3,7GluonField3,8GluonField4,1GluonField4,2GluonField4,3GluonField4,4GluonField4,5GluonField4,6GluonField4,7GluonField4,8,GluonFieldStrengthμ,ν,a=d_μ⁡GluonFieldν,a⁡X,X−d_ν⁡GluonFieldμ,a⁡X,X+g__s⁢FSU3a,b,c⁢`*`⁡GluonFieldμ,b⁡X,GluonFieldν,c⁡X,WMinusFieldμ=12⁢WFieldμ,~1+ⅈ⁢WFieldμ,~2⁢2,WMinusFieldStrengthμ,ν=d_μ⁡WMinusFieldν⁡X,X−d_ν⁡WMinusFieldμ⁡X,X,WPlusFieldμ=12⁢WFieldμ,~1−ⅈ⁢WFieldμ,~2⁢2,WPlusFieldStrengthμ,ν=d_μ⁡WPlusFieldν⁡X,X−d_ν⁡WPlusFieldμ⁡X,X,ZFieldμ=cos⁡WeinbergAngle⁢WFieldμ,~3−sin⁡WeinbergAngle⁢BFieldμ,ZFieldStrengthμ,ν=d_μ⁡ZFieldν⁡X,X−d_ν⁡ZFieldμ⁡X,X
The convention in (7) for the signs in the definitions of Aμ (using +sin) and Zμ(using -sin) also follows ref [1] (page 702) and [3] (page 66), and the presentation of the Standard Model in Wikipedia, but this convention is not uniform in the literature, and ref [2] (vol II, page 307) uses the opposite convention for these signs.
The definitions of covariant derivatives (not shown above) follow references [1] (pages 690 and 802) and [2] (pages 355 of vol I and 155 of vol II), also the Wikipedia (webpages for QED and QCD) . E.g. for the Electron ej
D_muElectronjX: % = expand%
D_μ⁡Electronj⁡X,X=d_μ⁡Electronj⁡X,X+ⅈ⁢g__e⁢`*`⁡Electronj⁡X,ElectromagneticFieldμ⁡X
where g__e<0 is equal to the electric charge of the electron, and for the Top, uj,A
D_muUpj,AX: % = expand%
D_μ⁡Upj,A⁡X,X=d_μ⁡Upj,A⁡X,X−12⁢ⅈ⁢g__s⁢`*`⁡GlambdaaA,B,Upj,B⁡X,GluonFieldμ,a⁡X
where g__s>0 is the strong coupling constant. The Gell-Mann matrices, that enter gauge terms in the interaction Lagrangian of the StandardModel are represented by Glambda, implemented as a tensor with an SU(3) adjoint representation index, all of whose components are matrices
Glambdaa=Glambda1Glambda2Glambda3Glambda4Glambda5Glambda6Glambda7Glambda8
seqGlambdaa,matrix, a=1..8
λ1=010100000,λ2=0−ⅈ0ⅈ00000,λ3=1000−10000,λ4=001000100,λ5=00−ⅈ000ⅈ00,λ6=000001010,λ7=00000−ⅈ0ⅈ0,λ8=3300033000−2⁢33
These matrices satisfy a SU(3) algebra
Library:-DefaultAlgebraRulesGlambda
%Commutator⁡Glambdab,Glambdac=2⁢ⅈ⁢FSU3a,b,c⁢Glambdaa
The structure constants FSU3a,b,centering (12) and interaction Lagrangian terms of the StandardModel form a 3-dimensional array of 8 x 8 matrices represented by the command FSU3, implemented as a tensor with three SU(3) adjoint representation indices. As with any other tensor of the Physics package, to see its components you can use the keyword matrix, e.g.
FSU31,b,c,matrix
FSU31,b,c=00000000001000000−100000000000012000000−1200000012000000−12000000000000
or, for a more general exploration of the components of FSU3a,b,cyou can use the command TensorArray with the option explore
TensorArrayFSU3a,b,c,explore
⁢FSU3a,b,c ordering of free indices=a,b,c
Index 1
abc
Value of Index 1
The tensorial equation for the Gell-Mann matrices
is computable for each value of its tensor indices, e.g.
SumOverRepeatedIndices
%Commutator⁡Glambdab,Glambdac=2⁢ⅈ⁢FSU31,b,c⁢Glambda1+FSU32,b,c⁢Glambda2+FSU33,b,c⁢Glambda3+FSU34,b,c⁢Glambda4+FSU35,b,c⁢Glambda5+FSU36,b,c⁢Glambda6+FSU37,b,c⁢Glambda7+FSU38,b,c⁢Glambda8
eval,b=4,c=5
%Commutator⁡Glambda4,Glambda5=2⁢ⅈ⁢12⁢Glambda3+12⁢3⁢Glambda8
Activating the left-hand side,
value
2⁢ⅈ⁢FSU34,5,a⁢λa=2⁢ⅈ⁢λ32+3⁢λ82
expandSumOverRepeatedIndices
ⅈ⁢λ3+ⅈ⁢3⁢λ8=ⅈ⁢λ3+ⅈ⁢3⁢λ8
To see all the components of (12) ≡ %Commutator⁡Glambdab,Glambdac=2⁢I⁢FSU3a,b,c⁢λa at once you can use TensorArray
TensorArray
%Commutator⁡Glambda1,Glambda1=0%Commutator⁡Glambda1,Glambda2=2⁢I⁢Glambda3%Commutator⁡Glambda1,Glambda3=−2⁢I⁢Glambda2%Commutator⁡Glambda1,Glambda4=I⁢Glambda7%Commutator⁡Glambda1,Glambda5=−I⁢Glambda6%Commutator⁡Glambda1,Glambda6=I⁢Glambda5%Commutator⁡Glambda1,Glambda7=−I⁢Glambda4%Commutator⁡Glambda1,Glambda8=0%Commutator⁡Glambda2,Glambda1=−2⁢I⁢Glambda3%Commutator⁡Glambda2,Glambda2=0%Commutator⁡Glambda2,Glambda3=2⁢I⁢Glambda1%Commutator⁡Glambda2,Glambda4=I⁢Glambda6%Commutator⁡Glambda2,Glambda5=I⁢Glambda7%Commutator⁡Glambda2,Glambda6=−I⁢Glambda4%Commutator⁡Glambda2,Glambda7=−I⁢Glambda5%Commutator⁡Glambda2,Glambda8=0%Commutator⁡Glambda3,Glambda1=2⁢I⁢Glambda2%Commutator⁡Glambda3,Glambda2=−2⁢I⁢Glambda1%Commutator⁡Glambda3,Glambda3=0%Commutator⁡Glambda3,Glambda4=I⁢Glambda5%Commutator⁡Glambda3,Glambda5=−I⁢Glambda4%Commutator⁡Glambda3,Glambda6=−I⁢Glambda7%Commutator⁡Glambda3,Glambda7=I⁢Glambda6%Commutator⁡Glambda3,Glambda8=0%Commutator⁡Glambda4,Glambda1=−I⁢Glambda7%Commutator⁡Glambda4,Glambda2=−I⁢Glambda6%Commutator⁡Glambda4,Glambda3=−I⁢Glambda5%Commutator⁡Glambda4,Glambda4=0%Commutator⁡Glambda4,Glambda5=I⁢3⁢Glambda8+Glambda3%Commutator⁡Glambda4,Glambda6=I⁢Glambda2%Commutator⁡Glambda4,Glambda7=I⁢Glambda1%Commutator⁡Glambda4,Glambda8=−I⁢3⁢Glambda5%Commutator⁡Glambda5,Glambda1=I⁢Glambda6%Commutator⁡Glambda5,Glambda2=−I⁢Glambda7%Commutator⁡Glambda5,Glambda3=I⁢Glambda4%Commutator⁡Glambda5,Glambda4=−I⁢3⁢Glambda8+Glambda3%Commutator⁡Glambda5,Glambda5=0%Commutator⁡Glambda5,Glambda6=−I⁢Glambda1%Commutator⁡Glambda5,Glambda7=I⁢Glambda2%Commutator⁡Glambda5,Glambda8=I⁢3⁢Glambda4%Commutator⁡Glambda6,Glambda1=−I⁢Glambda5%Commutator⁡Glambda6,Glambda2=I⁢Glambda4%Commutator⁡Glambda6,Glambda3=I⁢Glambda7%Commutator⁡Glambda6,Glambda4=−I⁢Glambda2%Commutator⁡Glambda6,Glambda5=I⁢Glambda1%Commutator⁡Glambda6,Glambda6=0%Commutator⁡Glambda6,Glambda7=I⁢−Glambda3+3⁢Glambda8%Commutator⁡Glambda6,Glambda8=−I⁢3⁢Glambda7%Commutator⁡Glambda7,Glambda1=I⁢Glambda4%Commutator⁡Glambda7,Glambda2=I⁢Glambda5%Commutator⁡Glambda7,Glambda3=−I⁢Glambda6%Commutator⁡Glambda7,Glambda4=−I⁢Glambda1%Commutator⁡Glambda7,Glambda5=−I⁢Glambda2%Commutator⁡Glambda7,Glambda6=−I⁢−Glambda3+3⁢Glambda8%Commutator⁡Glambda7,Glambda7=0%Commutator⁡Glambda7,Glambda8=I⁢3⁢Glambda6%Commutator⁡Glambda8,Glambda1=0%Commutator⁡Glambda8,Glambda2=0%Commutator⁡Glambda8,Glambda3=0%Commutator⁡Glambda8,Glambda4=I⁢3⁢Glambda5%Commutator⁡Glambda8,Glambda5=−I⁢3⁢Glambda4%Commutator⁡Glambda8,Glambda6=I⁢3⁢Glambda7%Commutator⁡Glambda8,Glambda7=−I⁢3⁢Glambda6%Commutator⁡Glambda8,Glambda8=0
To represent, in what follows, the interaction Lagrangians for QCD and the Electro-Weak sector as sums over leptons and quarks, all of them fermions, it is useful to introduce two anticommutative prefixes to be used as summation indices
Setupanticommutativeprefix = f__L,f__Q
anticommutativeprefix=f__L,f__Q
CompactDisplayf__L,f__QX
f__L⁡X⁢will now be displayed as⁢f__L
f__Q⁡X⁢will now be displayed as⁢f__Q
The Quantum Electrodynamics (QED) sector of the Standard Model and its interaction Lagrangian
QED is about the interaction between electrons and the photon. The electron field is implemented as a Dirac spinor Electroni, displayed ei, and the electromagnetic field as a spacetime tensor ElectromagneticFieldmu displayed Aμ. The interaction Lagrangian, used to compute scattering amplitudes, can be input as
L__QED ≔ −g__e conjugateElectroniX⋅Dgamma~mui, j⋅ElectronjX⋅ElectromagneticFieldmuX
−g__e⁢Dgamma~muⅈ,j⁢`*`⁡conjugate⁡Electronⅈ⁡X,Electronj⁡X,ElectromagneticFieldμ⁡X
For example, the self-energies of the electron and the photon are given by
FeynmanDiagramsL__QED,incomingparticles=Electron,outgoing=Electron,numberofloops=1,diagrams
−%FeynmanIntegral⁡−18⁢Physics:-FeynmanDiagrams:-UspinorElectronk⁡P__1_⁢conjugate⁡Physics:-FeynmanDiagrams:-UspinorElectronl⁡P__2_⁢g__e2⁢Dgamma~alphal,m⁢Dgamma~nun,k⁢P__1β+p__2β⁢Dgamma~betam,n+mElectron⁢KroneckerDeltam,n⁢g_α,ν⁢Dirac⁡−P__2+P__1π3⁢P__1+p__22−mElectron2+ⅈ⁢Physics:-FeynmanDiagrams:-ε⁢p__22+ⅈ⁢Physics:-FeynmanDiagrams:-ε,p__2
FeynmanDiagramsL__QED,incomingparticles=ElectromagneticField,outgoing=ElectromagneticField,numberofloops=1,diagrams
−%FeynmanIntegral⁡116⁢Physics:-FeynmanDiagrams:-PolarizationVectorElectromagneticFieldν⁡P__1_⁢conjugate⁡Physics:-FeynmanDiagrams:-PolarizationVectorElectromagneticFieldα⁡P__2_⁢g__e2⁢Dgamma~alphan,k⁢Dgamma~num,l⁢P__1β+p__2β⁢Dgamma~betak,m+mElectron⁢KroneckerDeltak,m⁢mElectron⁢KroneckerDeltal,n+p__2κ⁢Dgamma~kappal,n⁢Dirac⁡−P__2+P__1π3⁢E__1⁢E__2⁢P__1+p__22−mElectron2+ⅈ⁢Physics:-FeynmanDiagrams:-ε⁢p__22−mElectron2+ⅈ⁢Physics:-FeynmanDiagrams:-ε,p__2
To perform different manipulations of Feynman integrals, or their full evaluation when possible, see the FeynmanIntegral package.
The Lagrangian of QED can also be retrieved using the Lagrangian command
LagrangianQED
`*`⁡conjugate⁡Electronj⁡X,ⅈ⁢Dgammaμj,k⁢D_~mu−mElectron⁢KroneckerDeltaj,k,Electronk⁡X−14⁢`*`⁡ElectromagneticFieldStrengthμ,ν,ElectromagneticFieldStrength~mu,~nu
Note the above is the full Lagrangian, not just the interaction part. It includes the trace of the electromagnetic field strength (last term) and is expressed using the covariant derivative operator ▿⁢μ⁢μ. The notation used is product notation to represent the application of the differential operator. To transform this product notation into the application of the operator you can use
Library:-ApplyProductsOfDifferentialOperators
`*`⁡conjugate⁡Electronj⁡X,ⅈ⁢Dgammaμj,k⁢D_~mu⁡Electronk⁡X,X−`*`⁡mElectron,KroneckerDeltaj,k,Electronk⁡X−14⁢`*`⁡ElectromagneticFieldStrengthμ,ν,ElectromagneticFieldStrength~mu,~nu
or optionally request to Lagrangian for the operator to appear applied
LagrangianQED, applied
`*`⁡conjugate⁡Electronj⁡X,ⅈ⁢D_μ⁡Electronk⁡X,X⁢Dgamma~muj,k−`*`⁡mElectron,KroneckerDeltaj,k,Electronk⁡X−14⁢`*`⁡ElectromagneticFieldStrengthμ,ν,ElectromagneticFieldStrength~mu,~nu
To expand the covariant derivative, use expand
D_muElectronkX: % =expand%
D_μ⁡Electronk⁡X,X=d_μ⁡Electronk⁡X,X+ⅈ⁢g__e⁢`*`⁡Electronk⁡X,ElectromagneticFieldμ⁡X
from where
expand
ⅈ⁢Dgamma~muj,k⁢`*`⁡conjugate⁡Electronj⁡X,d_μ⁡Electronk⁡X,X−Dgamma~muj,k⁢g__e⁢`*`⁡conjugate⁡Electronj⁡X,Electronk⁡X,ElectromagneticFieldμ⁡X−mElectron⁢KroneckerDeltaj,k⁢`*`⁡conjugate⁡Electronj⁡X,Electronk⁡X−14⁢`*`⁡ElectromagneticFieldStrengthμ,ν,ElectromagneticFieldStrength~mu,~nu
You can also optionally request the Lagrangian to appear expanded, in which case 𝔽μ,ν is also expanded using its definition
ElectromagneticFieldStrengthdefinition
ElectromagneticFieldStrengthμ,ν=d_μ⁡ElectromagneticFieldν⁡X,X−d_ν⁡ElectromagneticFieldμ⁡X,X
LagrangianQED, expanded
ⅈ⁢`*`⁡conjugate⁡Electronj⁡X,d_μ⁡Electronk⁡X,X⁢Dgamma~muj,k−g__e⁢`*`⁡conjugate⁡Electronj⁡X,Electronk⁡X,ElectromagneticFieldμ⁡X⁢Dgamma~muj,k−mElectron⁢`*`⁡conjugate⁡Electronj⁡X,Electronj⁡X−14⁢`*`⁡d_μ⁡ElectromagneticFieldν⁡X,X−d_ν⁡ElectromagneticFieldμ⁡X,X,d_~mu⁡ElectromagneticField~nu⁡X,X−d_~nu⁡ElectromagneticField~mu⁡X,X
To get only the interaction Lagrangian part of this expression you can use the keyword interaction
LagrangianQED,interaction
−Dgamma~muj,k⁢g__e⁢`*`⁡conjugate⁡Electronj⁡X,Electronk⁡X,ElectromagneticFieldμ⁡X
The Quantum Chromodynamics (QCD) sector of the Standard Model and its interaction Lagrangian
QCD is about the interaction between quarks and gluons and the self-interaction of the latter. Quarks are implemented as tensors with one spinor and one SU(3) fundamental representation (1..3) indices. Unless set otherwise, according to the starting message these indices are represented by lowercaselatin_is and uppercaselatin_ah letters. Gluons are tensors with one spacetime and one SU(3) adjoint representation index (1..8), respectively represented by greek and lowercaselatin_ah letters, and g__s is the QCD coupling constant.
The interaction Lagrangian for the QCD can then be introduced as the sum of two terms
L__QCD ≔ L__QG+L__GG
L__QCD≔L__QG+L__GG
where L__QG represents the part involving the interaction between quarks and gluons, and L__GG the part related to the self-interaction between gluons. L__QG is given by
L__QG ≔ g__s2⋅Dgammamuk, j⋅GluonFieldmu, aX⋅GlambdaaA, B ⋅%addconjugatef__Qk, AX⋅f__Qj, BX,f__Q=StandardModel:-Quarks
12⁢g__s⁢`*`⁡%add⁡`*`⁡conjugate⁡f__Qk,A⁡X,f__Qj,B⁡X,f__Q=Up,Charm,Top,Down,Strange,Bottom,GluonFieldμ,a⁡X,GlambdaaA,B⁢Dgamma~muk,j
The self-interactions of the gluons L__GG can be written using the structure constants FSU3d,a,b and the Gell-Mann matrices λa
L__GG ≔ −g__s⋅FSU3a, b, c⋅d_muGluonFieldnu, aX, X⋅ GluonField~mu, bX⋅ GluonField~nu, cX+ g__s4⋅FSU3e, d, c⋅GluonFieldmu, aX⋅ GluonFieldlambda, bX⋅GluonField~mu, eX⋅GluonField~lambda, dX
−g__s⁢FSU3a,b,c⁢`*`⁡d_μ⁡GluonFieldν,a⁡X,X,GluonField~mu,b⁡X,GluonField~nu,c⁡X−14⁢g__s⁢FSU3c,d,e⁢`*`⁡GluonFieldμ,a⁡X,GluonFieldλ,b⁡X,GluonField~mu,e⁡X,GluonField~lambda,d⁡X
From where
L__QCD
12⁢g__s⁢`*`⁡%add⁡`*`⁡conjugate⁡f__Qk,A⁡X,f__Qj,B⁡X,f__Q=Up,Charm,Top,Down,Strange,Bottom,GluonFieldμ,a⁡X,GlambdaaA,B⁢Dgamma~muk,j−g__s⁢FSU3a,b,c⁢`*`⁡d_μ⁡GluonFieldν,a⁡X,X,GluonField~mu,b⁡X,GluonField~nu,c⁡X−14⁢g__s⁢FSU3c,d,e⁢`*`⁡GluonFieldμ,a⁡X,GluonFieldλ,b⁡X,GluonField~mu,e⁡X,GluonField~lambda,d⁡X
This QCD Lagrangian can also be retrieved using Lagrangian
LagrangianQCD,expanded
`*`⁡conjugate⁡Upj,A⁡X,ⅈ⁢d_μ⁡Upk,A⁡X,X−12⁢ⅈ⁢g__s⁢`*`⁡GlambdaaA,B,Upk,B⁡X,GluonFieldμ,a⁡X⁢Dgamma~muj,k−mUp⁢KroneckerDeltaj,k⁢Upk,A⁡X+`*`⁡conjugate⁡Charmj,A⁡X,ⅈ⁢d_μ⁡Charmk,A⁡X,X−12⁢ⅈ⁢g__s⁢`*`⁡GlambdaaA,B,Charmk,B⁡X,GluonFieldμ,a⁡X⁢Dgamma~muj,k−mCharm⁢KroneckerDeltaj,k⁢Charmk,A⁡X+`*`⁡conjugate⁡Topj,A⁡X,ⅈ⁢d_μ⁡Topk,A⁡X,X−12⁢ⅈ⁢g__s⁢`*`⁡GlambdaaA,B,Topk,B⁡X,GluonFieldμ,a⁡X⁢Dgamma~muj,k−mTop⁢KroneckerDeltaj,k⁢Topk,A⁡X+`*`⁡conjugate⁡Downj,A⁡X,ⅈ⁢d_μ⁡Downk,A⁡X,X−12⁢ⅈ⁢g__s⁢`*`⁡GlambdaaA,B,Downk,B⁡X,GluonFieldμ,a⁡X⁢Dgamma~muj,k−mDown⁢KroneckerDeltaj,k⁢Downk,A⁡X+`*`⁡conjugate⁡Strangej,A⁡X,ⅈ⁢d_μ⁡Strangek,A⁡X,X−12⁢ⅈ⁢g__s⁢`*`⁡GlambdaaA,B,Strangek,B⁡X,GluonFieldμ,a⁡X⁢Dgamma~muj,k−mStrange⁢KroneckerDeltaj,k⁢Strangek,A⁡X+`*`⁡conjugate⁡Bottomj,A⁡X,ⅈ⁢d_μ⁡Bottomk,A⁡X,X−12⁢ⅈ⁢g__s⁢`*`⁡GlambdaaA,B,Bottomk,B⁡X,GluonFieldμ,a⁡X⁢Dgamma~muj,k−mBottom⁢KroneckerDeltaj,k⁢Bottomk,A⁡X−14⁢`*`⁡d_μ⁡GluonFieldν,a⁡X,X−d_ν⁡GluonFieldμ,a⁡X,X+g__s⁢FSU3a,b,c⁢`*`⁡GluonFieldμ,b⁡X,GluonFieldν,c⁡X,d_~mu⁡GluonField~nu,a⁡X,X−d_~nu⁡GluonField~mu,a⁡X,X+g__s⁢FSU3a,d,e⁢`*`⁡GluonField~mu,d⁡X,GluonField~nu,e⁡X
LagrangianQCD,interaction
12⁢g__s⁢`*`⁡%add⁡`*`⁡conjugate⁡f__Qj,A⁡X,f__Qk,B⁡X,f__Q=Up,Charm,Top,Down,Strange,Bottom,GlambdaaA,B,GluonFieldμ,a⁡X⁢Dgamma~muj,k−g__s⁢FSU3a,b,c⁢`*`⁡d_μ⁡GluonFieldν,a⁡X,X,GluonField~mu,b⁡X,GluonField~nu,c⁡X−14⁢g__s⁢FSU3c,d,e⁢`*`⁡GluonFieldμ,a⁡X,GluonFieldα,b⁡X,GluonField~mu,e⁡X,GluonField~alpha,d⁡X
L__QCD ≔ LagrangianQCD,interaction,expanded
12⁢g__s⁢`*`⁡`*`⁡conjugate⁡Upj,A⁡X,Upk,B⁡X+`*`⁡conjugate⁡Charmj,A⁡X,Charmk,B⁡X+`*`⁡conjugate⁡Topj,A⁡X,Topk,B⁡X+`*`⁡conjugate⁡Downj,A⁡X,Downk,B⁡X+`*`⁡conjugate⁡Strangej,A⁡X,Strangek,B⁡X+`*`⁡conjugate⁡Bottomj,A⁡X,Bottomk,B⁡X,GlambdaaA,B,GluonFieldμ,a⁡X⁢Dgamma~muj,k−g__s⁢FSU3a,b,c⁢`*`⁡d_μ⁡GluonFieldν,a⁡X,X,GluonField~mu,b⁡X,GluonField~nu,c⁡X−14⁢g__s⁢FSU3c,d,e⁢`*`⁡GluonFieldμ,a⁡X,GluonFieldα,b⁡X,GluonField~mu,e⁡X,GluonField~alpha,d⁡X
Each of these terms has different contributions to a scattering amplitude. For example, take the first term with the interaction between Up quarks and gluons and last one with the self-interaction between four gluons.
L__UG ≔ op1, expandL__QCD
12⁢g__s⁢Dgamma~muj,k⁢`*`⁡conjugate⁡Upj,A⁡X,Upk,B⁡X,GlambdaaA,B,GluonFieldμ,a⁡X
The amplitude for the process with two incoming and two outgoing Up quarks (particle and antiparticle)
FeynmanDiagramsL__UG, incomingparticles = Up, conjugateUp, outgoingparticles = Up, conjugateUp, numberofloops = 0, diagrams
−ⅈ⁢uul,C⁡P__1→⁢vum,E⁡P__2→&conjugate0;⁢uun,F⁡P__3→&conjugate0;⁢vup,G⁡P__4→⁢g__s2⁢γ⁢α⁢αn,p⁢γ⁢ν⁢νm,l⁢gα,ν⁢δb,c⁢δ⁡−P__3⁢β⁢β−P__4⁢β⁢β+P__1⁢β⁢β+P__2⁢β⁢β⁢λcF,G⁢λbE,C16⁢π2⁢P__1κ+P__2κ⁢P__1⁢κ⁢κ+P__2⁢κ⁢κ+ⅈ⁢ε+ⅈ⁢uul,C⁡P__1→⁢vum,E⁡P__2→&conjugate0;⁢uun,F⁡P__3→&conjugate0;⁢vup,G⁡P__4→⁢g__s2⁢γ⁢α⁢αm,p⁢γ⁢ν⁢νn,l⁢gα,ν⁢δb,c⁢δ⁡−P__3⁢β⁢β−P__4⁢β⁢β+P__1⁢β⁢β+P__2⁢β⁢β⁢λcE,G⁢λbF,C16⁢π2⁢P__1⁢κ⁢κ−P__3⁢κ⁢κ⁢P__1κ−P__3κ+ⅈ⁢ε
L__GGGG ≔ op−1, expandL__QCD
14⁢g__s2⁢FSU3a,b,c⁢FSU3c,d,e⁢`*`⁡GluonFieldα,b⁡X,GluonFieldμ,a⁡X,GluonField~alpha,d⁡X,GluonField~mu,e⁡X
The amplitude at tree level for the process with two incoming and two outgoing gluons
FeynmanDiagramsL__GGGG,incomingparticles=GluonField, GluonField,outgoingparticles=GluonField,GluonField,numberofloops=0,diagrams
ⅈ16⁢g__s2⁢δ⁡−P__3⁢σ⁢σ−P__4⁢σ⁢σ+P__1⁢σ⁢σ+P__2⁢σ⁢σ⁢ϵGν,f⁡P__1→⁢ϵGβ,g⁡P__2→⁢ϵGκ,h⁡P__3→&conjugate0;⁢ϵGλ,a1⁡P__4→&conjugate0;⁢−FSU3a1,c,f⁢FSU3c,g,h−FSU3a1,c,g⁢FSU3c,f,h⁢g⁢β,ν⁢β,ν⁢g⁢κ,λ⁢κ,λ+FSU3a1,c,f⁢FSU3c,g,h−FSU3a1,c,h⁢FSU3c,f,g⁢g⁢κ,ν⁢κ,ν⁢g⁢β,λ⁢β,λ+g⁢λ,ν⁢λ,ν⁢g⁢β,κ⁢β,κ⁢FSU3a1,c,g⁢FSU3c,f,h+FSU3a1,c,h⁢FSU3c,f,gπ2⁢E__1⁢E__2⁢E__3⁢E__4
The Electroweak sector of the Standard Model and its interaction Lagrangian
Before symmetry breaking
The electro-weak interaction before symmetry breaking, that are not used to compute observable scattering amplitudes, but from where the formulation after symmetry breaking is derived, can be expressed as a sum of four terms mentioned in the Wikipedia page for the weak interaction
L__EW ≔ L__g+L__f+L__h+L__y
L__EW≔L__g+L__f+L__h+L__y
Out of these four, in the Maple 2022.0 implementation of StandardModel it is possible to represent the first term, L__g, the kinetic term for the Wμ,J and Bμ vector bosons
L__g ≔ −14⋅WFieldStrengthμ,ν,J2+BFieldStrengthμ,ν2
L__g≔−𝕎μ,ν,J⁢𝕎⁢μ,νJ⁢μ,νJ4−𝔹μ,ν⁢𝔹⁢μ,ν⁢μ,ν4
Introducing the definitions of these tensors we have
BFieldStrengthdefinition,WFieldStrengthdefinition
𝔹μ,ν=∂μ⁡BFieldν⁡X−∂ν⁡BFieldμ⁡X,𝕎μ,ν,J=∂μ⁡WFieldν,J⁡X−∂ν⁡WFieldμ,J⁡X+g__w⁢εJ,K,L⁢WFieldμ,K⁡X⁢WFieldν,L⁡X
L__g ≔ SubstituteTensor,L__g
−14⁢`*`⁡d_μ⁡WFieldν,J⁡X,X−d_ν⁡WFieldμ,J⁡X,X+g__w⁢LeviCivitaJ,K,L⁢`*`⁡WFieldμ,K⁡X,WFieldν,L⁡X,d_~mu⁡WField~nu,J⁡X,X−d_~nu⁡WField~mu,J⁡X,X+g__w⁢LeviCivitaJ,M,N⁢`*`⁡WField~mu,M⁡X,WField~nu,N⁡X−14⁢`*`⁡d_μ⁡BFieldν⁡X,X−d_ν⁡BFieldμ⁡X,X,d_~mu⁡BField~nu⁡X,X−d_~nu⁡BField~mu⁡X,X
The L__f term is the kinetic term for the fermions of the model before symmetry breaking, and their interaction with the gauge bosons Wμ,K and Bμis through the covariant derivative. The L__h term involves the Higgs boson before symmetry breaking (the HiggsBoson≡Φ field implemented in the StandardModel in Maple 2022 is the Higgs after symmetry breaking) and the L__y formulates the Yukawa interaction with the fermions. Note that the electron field ej, as well as all the leptons are Dirac spinors that result after symmetry breaking. The quarks are also particles that appear through the symmetry breaking mechanism.
After symmetry breaking
For the purpose of computing scattering amplitudes, the formulation of the interaction Lagrangian after symmetry breaking is more relevant. Following the presentation in Wikipedia, the interaction Lagrangian of this sector is given by
L__EW ≔ L__K+L__N+L__C+L__H+L__HV+L__WWV+L__WWVV+L__Y;
L__EW≔L__K+L__N+L__C+L__H+L__HV+L__WWV+L__WWVV+L__Y;
where we use the notation shown in the Wikipedia page for the weak interaction. As illustration, we compute here the L__K and L__N terms, respectively containing the kinetic terms corresponding to the free fields and the interaction terms between the fermions - leptons and quarks - and the gauge bosons Aμand Zμ. At the end, we use the Lagrangian command to retrieve all the terms of (49).
The kinetic term L__K can be entered as
L__K = −14ElectromagneticFieldStrengthmu,nu2 − 12WPlusFieldStrengthmu,nu⋅WMinusFieldStrengthmu,nu+12⋅mWField2⋅WPlusFieldmu⋅WMinusFieldmu −14ZFieldStrengthmu,nu2+12mZField2⋅ZFieldmu2+12d_muHiggsBosonX2−mHiggsBoson22⋅HiggsBosonX2 +%addconjugatef__LjX⋅Dgammamu j,k⋅i⋅d_muf__LkX − mf__L⋅f__LjX, f__L = StandardModel:-Leptons1..3 +%addconjugatef__LjX⋅Dgammamu j,k⋅i⋅d_muf__LkX , f__L = StandardModel:-Leptons4..6 +%addconjugatef__Qj, AX⋅Dgammamuj,k⋅i⋅d_muf__Qk,AX − mf__Q⋅f__Qj,AX, f__Q = StandardModel:-Quarks
L__K=−14⁢`*`⁡ElectromagneticFieldStrengthμ,ν,ElectromagneticFieldStrength~mu,~nu−12⁢`*`⁡WPlusFieldStrengthμ,ν,WMinusFieldStrength~mu,~nu+12⁢mWField2⁢`*`⁡WPlusFieldμ,WMinusField~mu−14⁢`*`⁡ZFieldStrengthμ,ν,ZFieldStrength~mu,~nu+12⁢mZField2⁢`*`⁡ZFieldμ,ZField~mu+12⁢`*`⁡d_μ⁡HiggsBoson⁡X,X,d_~mu⁡HiggsBoson⁡X,X−12⁢mHiggsBoson2⁢`^`⁡HiggsBoson⁡X,2+%add⁡`*`⁡conjugate⁡f__Lj⁡X,ⅈ⁢d_μ⁡f__Lk⁡X,X⁢Dgamma~muj,k−mf__L⁢f__Lj⁡X,f__L=Electron,Muon,Tauon+%add⁡ⅈ⁢`*`⁡conjugate⁡f__Lj⁡X,d_μ⁡f__Lk⁡X,X⁢Dgamma~muj,k,f__L=ElectronNeutrino,MuonNeutrino,TauonNeutrino+%add⁡`*`⁡conjugate⁡f__Qj,A⁡X,ⅈ⁢d_μ⁡f__Qk,A⁡X,X⁢Dgamma~muj,k−mf__Q⁢f__Qj,A⁡X,f__Q=Up,Charm,Top,Down,Strange,Bottom
The inert sums over the leptons and quarks can be activated using value
L__K=−14⁢`*`⁡ElectromagneticFieldStrengthμ,ν,ElectromagneticFieldStrength~mu,~nu−12⁢`*`⁡WPlusFieldStrengthμ,ν,WMinusFieldStrength~mu,~nu+12⁢mWField2⁢`*`⁡WPlusFieldμ,WMinusField~mu−14⁢`*`⁡ZFieldStrengthμ,ν,ZFieldStrength~mu,~nu+12⁢mZField2⁢`*`⁡ZFieldμ,ZField~mu+12⁢`*`⁡d_μ⁡HiggsBoson⁡X,X,d_~mu⁡HiggsBoson⁡X,X−12⁢mHiggsBoson2⁢`^`⁡HiggsBoson⁡X,2+`*`⁡conjugate⁡Electronj⁡X,ⅈ⁢d_μ⁡Electronk⁡X,X⁢Dgamma~muj,k−mElectron⁢Electronj⁡X+`*`⁡conjugate⁡Muonj⁡X,ⅈ⁢d_μ⁡Muonk⁡X,X⁢Dgamma~muj,k−mMuon⁢Muonj⁡X+`*`⁡conjugate⁡Tauonj⁡X,ⅈ⁢d_μ⁡Tauonk⁡X,X⁢Dgamma~muj,k−mTauon⁢Tauonj⁡X+ⅈ⁢`*`⁡conjugate⁡ElectronNeutrinoj⁡X,d_μ⁡ElectronNeutrinok⁡X,X⁢Dgamma~muj,k+ⅈ⁢`*`⁡conjugate⁡MuonNeutrinoj⁡X,d_μ⁡MuonNeutrinok⁡X,X⁢Dgamma~muj,k+ⅈ⁢`*`⁡conjugate⁡TauonNeutrinoj⁡X,d_