Matrix Inverse - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

LinearAlgebra[Generic]

 MatrixInverse
 compute the inverse of a square Matrix

 Calling Sequence MatrixInverse[F](A)

Parameters

 F - the domain of computation, a field A - rectangular Matrix over values in F

Description

 • MatrixInverse(A) computes the matrix inverse of the Matrix A over the field F.
 • The (indexed) parameter F, which specifies the domain of computation, a field, must be a Maple table/module which has the following values/exports:
 F[0]: a constant for the zero of the ring F
 F[1]: a constant for the (multiplicative) identity of F
 F[+]: a procedure for adding elements of F (nary)
 F[-]: a procedure for negating and subtracting elements of F (unary and binary)
 F[*]: a procedure for multiplying two elements of F (commutative)
 F[/]: a procedure for dividing two elements of F
 F[=]: a boolean procedure for testing if two elements in F are equal

Examples

 > $\mathrm{with}\left({\mathrm{LinearAlgebra}}_{\mathrm{Generic}}\right):$
 > ${Q}_{\mathrm{0}},{Q}_{\mathrm{1}},{Q}_{\mathrm{+}},{Q}_{\mathrm{-}},{Q}_{\mathrm{*}},{Q}_{\mathrm{/}},{Q}_{\mathrm{=}}≔0,1,\mathrm{+},\mathrm{-},\mathrm{*},\mathrm{/},\mathrm{=}$
 ${{Q}}_{{0}}{,}{{Q}}_{{1}}{,}{{Q}}_{{\mathrm{+}}}{,}{{Q}}_{{\mathrm{-}}}{,}{{Q}}_{{\mathrm{*}}}{,}{{Q}}_{{\mathrm{/}}}{,}{{Q}}_{{\mathrm{=}}}{≔}{0}{,}{1}{,}{\mathrm{+}}{,}{\mathrm{-}}{,}{\mathrm{*}}{,}{\mathrm{/}}{,}{\mathrm{=}}$ (1)
 > $A≔\mathrm{Matrix}\left(\left[\left[1,2,3\right],\left[2,1,2\right],\left[3,2,1\right]\right]\right)$
 ${A}{≔}\left[\begin{array}{ccc}{1}& {2}& {3}\\ {2}& {1}& {2}\\ {3}& {2}& {1}\end{array}\right]$ (2)
 > ${\mathrm{MatrixInverse}}_{Q}\left(A\right)$
 $\left[\begin{array}{ccc}{-}\frac{{3}}{{8}}& \frac{{1}}{{2}}& \frac{{1}}{{8}}\\ \frac{{1}}{{2}}& {-1}& \frac{{1}}{{2}}\\ \frac{{1}}{{8}}& \frac{{1}}{{2}}& {-}\frac{{3}}{{8}}\end{array}\right]$ (3)