>

$\mathrm{with}\left(\mathrm{Optimization}\right)\:$

Solve a linear program with the Optimization[LPSolve] command. A list containing the final objective value and a point is returned.
>

$\mathrm{LPSolve}\left(4x5y\,\left\{0\le x\,0\le y\,x+2y\le 6\,5x+4y\le 20\right\}\right)$

$\left[{\mathrm{19.}}{\,}\left[{x}{=}{2.66666666666667}{\,}{y}{=}{1.66666666666667}\right]\right]$
 (1) 
Use the $\mathrm{output}=\mathrm{solutionmodule}$ option to obtain a module and assign this result to the variable m.
>

$m\u2254\mathrm{LPSolve}\left(4x5y\,\left\{0\le x\,0\le y\,x+2y\le 6\,5x+4y\le 20\right\}\,\mathrm{output}=\mathrm{solutionmodule}\right)$

${m}{\u2254}{\mathbf{module}}\left({}\right)\phantom{\rule[0.0ex]{0.5em}{0.0ex}}{\mathbf{export}}\phantom{\rule[0.0ex]{0.5em}{0.0ex}}{\mathrm{Results}}{\,}{\mathrm{Settings}}{\;}\phantom{\rule[0.0ex]{0.5em}{0.0ex}}{}\phantom{\rule[0.0ex]{0.5em}{0.0ex}}{\mathbf{end\; module}}$
 (2) 
Display the results using the Results export.
>

$m:\mathrm{Results}\left(\right)$

$\left[{''objectivevalue''}{=}{\mathrm{19.}}{\,}{''solutionpoint''}{=}\left[{x}{=}{2.66666666666667}{\,}{y}{=}{1.66666666666667}\right]{\,}{''iterations''}{=}{2}\right]$
 (3) 
Assign the initial point to the variable t.
>

$t\u2254m:\mathrm{Settings}\left(\mathrm{initialpoint}\right)$

${t}{\u2254}\left[{x}{=}{0.}{\,}{y}{=}{0.}\right]$
 (4) 