AssignTransformationType - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[AssignTransformationType] - assign a type (one of projectable, point, contact, differential substitution, generalized differential substitution, generic) to a transformation

Calling Sequences

     AssignTransformationType(φ)

Parameters

     φ       - a transformation

 

Description

Examples

Description

• 

Let E M and FN be two fiber bundles, and let πk:JkE M , πk:JkFM be the associated bundles of kjets.

[i] A map φ :EF which sends the fibers of E to fibers of F (and hence covers a map φ0:M N) is called a projectable transformation.

[ii] A map φ:EF is called a point transformation.

[iii] A transformation φ :J1E  J1F is called a contact transformation if the fiber dimensions of E and F are 1 and φ pulls back the contact form on J1F to a multiple of the contact form on J1E.

[iv] If φ:JkE  F and φ covers the identity map MN ,then φ is called a differential substitution.

[v] A map φ:JkEF is called a generalized differential substitution.

[vi] A transformation not of one the types [i]--[v] is called generic.

Explicit coordinate formulas for these various types of maps are given in Example 1.

• 

 The command AssignTransformationType(φ ) returns the transformation φ, but with internal representation φ of  changed to encode its transformation type. The type of a transformation and its prolongation order can be determined by the command DGinfo with the keyword "TransformationType".

• 

Any transformation of type [i]--[v] can be prolonged to higher order jet spaces. See Prolong for further information.

• 

The command AssignTransformationType is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form AssignTransformationType(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-AssignTransformationType(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

First initialize various jet spaces of one or two independent variables and one dependent variable and prolong them to order 4.

DGsetupx,y,u,E,4:DGsetupz,v,F,4:DGsetupp,q,w,K,4:

 

Case 1. Projectable transformations from E to F.

K > 

Φ1TransformationE,F,z=Ax,y,v=Bx,y,u

Φ1z=Ax,y,v=Bx,y,u

(2.1)

 

When a transformation is first defined, it is not given a type.

E > 

Tools:-DGinfoΦ1,TransformationType

(2.2)

 

Now assign the transformation Φ1 a type.

E > 

newPhi1AssignTransformationTypeΦ1

newPhi1z=Ax,y,v=Bx,y,u

(2.3)
E > 

Tools:-DGinfonewPhi1,TransformationType

projectable,0

(2.4)

 

This indicates that the transformation is a projectable transformation, the 0 indicates that the transformation has not been prolonged to a jet space.

 

Case 2. Point transformations:

E > 

Φ2TransformationE,F,z=Ax,y,u,v=Bx,y,u

Φ2z=Ax,y,u,v=Bx,y,u

(2.5)
E > 

newPhi2AssignTransformationTypeΦ2

newPhi2z=Ax,y,u,v=Bx,y,u

(2.6)
E > 

Tools:-DGinfonewPhi2,TransformationType

point,0

(2.7)

 

Case 3. Contact transformations:

E > 

Φ3TransformationE,K,p=u1,q=y,w=u1x+u,w1=x,w2=u2

Φ3p=u1,q=y,w=u1x+u,w1=x,w2=u2

(2.8)
E > 

newPhi3AssignTransformationTypeΦ3

newPhi3p=u1,q=y,w=u1x+u,w1=x,w2=u2

(2.9)
E > 

Tools:-DGinfonewPhi3,TransformationType

contact,1

(2.10)

 

By the conventions adopted here, a contact transformation need not be a local diffeomorphism so that, in particular, the dimensions of the bundles E and F  need not coincide.

E > 

Φ4TransformationF,E,x=z,y=1,u=v,u1=v1,u2=0

Φ4x=z,y=1,u=v,u1=v1,u2=0

(2.11)
F > 

newPhi4AssignTransformationTypeΦ4

newPhi4x=z,y=1,u=v,u1=v1,u2=0

(2.12)
F > 

Tools:-DGinfonewPhi3,TransformationType

contact,1

(2.13)

 

Case 4. Differential Substitutions:

F > 

varsx,y,u,u1,u2,u1,1,u1,2,u2,2

varsx,y,u,u1,u2,u1,1,u1,2,u2,2

(2.14)
E > 

Φ5TransformationE,K,p=x,q=y,w=Avars

Φ5p=x,q=y,w=Ax,y,u,u1,u2,u1,1,u1,2,u2,2

(2.15)
E > 

newPhi5AssignTransformationTypeΦ5:

E > 

Tools:-DGinfonewPhi5,TransformationType

differentialSubstitution,0

(2.16)

 

Case 5. Generalized Differential Substitutions:

E > 

Φ5TransformationE,F,z=Avars,v=Bvars

Φ5z=Ax,y,u,u1,u2,u1,1,u1,2,u2,2,v=Bx,y,u,u1,u2,u1,1,u1,2,u2,2

(2.17)
E > 

newPhi5AssignTransformationTypeΦ5:

E > 

Tools:-DGinfonewPhi5,TransformationType

generalizedDifferentialSubstitution,0

(2.18)

 

Case 6. Generic:

E > 

Φ6TransformationE,F,z=u1y,v=u2+xu,v1=y

Φ6z=u1y,v=xu+u2,v1=y

(2.19)
E > 

newPhi6AssignTransformationTypeΦ6

F > 

Tools:-DGinfonewPhi6,TransformationType

generic,NA

(2.20)

See Also

DifferentialGeometry

JetCalculus

AssignVectorType

DGinfo

Prolong

Transformation