chrem - Maple Help

Online Help

All Products    Maple    MapleSim


chrem

Chinese Remainder Algorithm

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

chrem(u, m)

Parameters

u

-

list [u1,..., un] of evaluations

m

-

list of moduli [m1,..., mn]

Description

• 

The list of moduli m must be pairwise relatively prime positive integers. (For the case of non-coprime moduli, see NumberTheory[ChineseRemainder].) Both lists u and m must be the same length n. The list of images u need not be reduced modulo m on input. In the following, M denotes the product of the moduli.

• 

If u is a list of integers, chrem(u, m) computes the unique positive integer a such that amodm1=u1,amodm2=u2,...,amodmn=un , and 0a<M.

• 

If the global variable mod has been assigned to mods then the result a is returned in the symmetric range for the integers modulo M. For example, the symmetric range for the integers modulo M=35 is -17a+17.

• 

If u is a list of polynomials, chrem is applied across the polynomials so that the output f is a polynomial satisfying fmodm1=u1 , ..., fmodmn=un.

• 

If u is a list of lists, chrem is applied across the lists so that the output will be a list L satisfying Lmodm1=u1, ..., Lmodmn=un .

• 

For a definition, see Chinese remainder theorem.

Examples

chrem1&comma;2&comma;5&comma;7

16

(1)

chrem3x+1&comma;x+2y+2&comma;5&comma;7

8x+16+30y

(2)

chrem3&comma;0&comma;1&comma;1&comma;2&comma;2&comma;5&comma;7

8&comma;30&comma;16

(3)

`mod`mods

modmods

(4)

chrem3x+1&comma;x+2y+2&comma;5&comma;7

8x+165y

(5)

See Also

GaussInt

GIchrem

NumberTheory[ChineseRemainder]