LowerEchelonForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[MatrixTools]

  

LowerEchelonForm

  

lower echelon form of a matrix modulo a regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

LowerEchelonForm(A, rc, R)

Parameters

A

-

square Matrix with coefficients in the ring of fractions of R

rc

-

regular chain of R

R

-

polynomial ring

Description

• 

The command LowerEchelonForm(A, rc, R) returns a list of pairs Bi,rci where rci is a regular chain, and Bi is the lower echelon form of A modulo the saturated ideal of rc_i.

• 

All the returned regular chains rci form a triangular decomposition of rc (in the sense of Kalkbrener).

• 

It is assumed that rc is strongly normalized.

• 

The algorithm is an adaptation of the algorithm of Bareiss.

• 

This command is part of the RegularChains[MatrixTools] package, so it can be used in the form LowerEchelonForm(..) only after executing the command with(RegularChains[MatrixTools]).  However, it can always be accessed through the long form of the command by using RegularChains[MatrixTools][LowerEchelonForm](..).

Examples

withRegularChains:withChainTools:withMatrixTools:

RPolynomialRingx,y,z

Rpolynomial_ring

(1)

TEmptyR:

TChainz+1z+2,y2+z,xzxy,T,R

Tregular_chain

(2)

EquationsT,R

x2+yzx+zy,y2+z,z2+3z+2

(3)

mMatrixx,y,z,x+1,y+2,z+3,x+4,y+5,z+6

mxyzx+1y+2z+3x+4y+5z+6

(4)

lemLowerEchelonFormm,T,R

lem600030x+4y+5z+6,regular_chain,1200−630x+4y+5z+6,regular_chain,000−6−30x+4y+5z+6,regular_chain,3x+6y+6003x3y+30x+4y+5z+6,regular_chain

(5)

See Also

Chain

Empty

Equations

IsStronglyNormalized

IsZeroMatrix

JacobianMatrix

MatrixInverse

MatrixMultiply

MatrixOverChain

MatrixTools

NormalForm

PolynomialRing

RegularChains