plots - Maple Programming Help

Home : Support : Online Help : Graphics : Packages : plots : plots/polyhedraplot

plots

 polyhedraplot
 create a 3-D point plot with polyhedra

 Calling Sequence polyhedraplot(L, options)

Parameters

 L - set or list of three-dimensional points

Description

 • The polyhedraplot function is used to create a three-dimensional plot of points with polyhedra. The points that are to be plotted come from the set or list L. L is in the form $[[\mathrm{x1},\mathrm{y1},\mathrm{z1}],[\mathrm{x2},\mathrm{y2},\mathrm{z2}],...,[\mathrm{xn},\mathrm{yn},\mathrm{zn}]]$. If there is only one point, then it may be simply [x, y, z].
 • The two specific options to this function are polyscale = s, where s is a constant and polytype = t, where t is a name. The polyscale option controls the size of each polyhedron, and the polytype option is the type of polyhedron (for example, tetrahedron, octahedron, ...). For a complete set of polyhedra names that are supported, see plots[polyhedra_supported]. The default scale is 1, and the default type of polyhedron is $\mathrm{tetrahedron}$.
 • Additional arguments are interpreted as plot3d options which are specified as equations of the form option = value. See plot3d/option for details.
 • To perform computations with polyhedra, use the commands from the geom3d package. Information on the types of polyhedra supported in the the geom3d package can be found on geom3d/polyhedra.

Examples

 > $\mathrm{with}\left(\mathrm{plots}\right):$
 > $p≔\mathrm{seq}\left(\left[\mathrm{cos}\left(\frac{t\mathrm{Pi}}{50}\right)\left(10+4\mathrm{sin}\left(9\frac{t\mathrm{Pi}}{50}\right)\right),\mathrm{sin}\left(\frac{t\mathrm{Pi}}{50}\right)\left(10+4\mathrm{sin}\left(9\frac{t\mathrm{Pi}}{50}\right)\right),4\mathrm{cos}\left(9\frac{t\mathrm{Pi}}{50}\right)\right],t=0..200\right):$
 > $\mathrm{polyhedraplot}\left(\left[p\right],\mathrm{polyscale}=0.4,\mathrm{polytype}=\mathrm{hexahedron},\mathrm{scaling}=\mathrm{constrained},\mathrm{orientation}=\left[76,40\right]\right)$ The command to create the plot from the Plotting Guide is

 > $\mathrm{polyhedraplot}\left(\left[0,0,0\right],\mathrm{polytype}=\mathrm{dodecahedron},\mathrm{scaling}=\mathrm{constrained},\mathrm{orientation}=\left[71,66\right]\right)$ 