 CharacteristicPolynomial - Maple Help

Student[LinearAlgebra]

 CharacteristicPolynomial
 construct the characteristic polynomial of a Matrix Calling Sequence CharacteristicPolynomial(A, t) Parameters

 A - Matrix t - name; variable Description

 • The CharacteristicPolynomial(A, t) command returns the characteristic polynomial in t that has the eigenvalues of Matrix A as its roots (all multiplicities respected).
 This polynomial is the determinant of $t\mathrm{Id}-A$, where Id is the identity Matrix with Dimension(A). Examples

 > $\mathrm{with}\left(\mathrm{Student}\left[\mathrm{LinearAlgebra}\right]\right):$
 > $M≔⟨⟨1,0,0⟩|⟨1,1,0⟩|⟨0,3,2⟩⟩$
 ${M}{≔}\left[\begin{array}{ccc}{1}& {1}& {0}\\ {0}& {1}& {3}\\ {0}& {0}& {2}\end{array}\right]$ (1)
 > $\mathrm{CharacteristicPolynomial}\left(M,x\right)$
 ${{x}}^{{3}}{-}{4}{}{{x}}^{{2}}{+}{5}{}{x}{-}{2}$ (2)
 > $\mathrm{solve}\left(,x\right)$
 ${2}{,}{1}{,}{1}$ (3)
 > $\mathrm{Eigenvalues}\left(M\right)$
 $\left[\begin{array}{c}{2}\\ {1}\\ {1}\end{array}\right]$ (4)