InverseComplexCepstrum - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

SignalProcessing

 InverseComplexCepstrum
 compute the inverse complex cepstrum of the signal

 Calling Sequence InverseComplexCepstrum(A, nd)

Parameters

 A - Array of real numeric values; the signal nd - integer the number of samples of delay

Description

 • The InverseComplexCepstrum(A) command computes the inverse complex cepstrum of the real data A.
 • nd is the number of samples of delay and the second output of ComplexCepstrum.
 • A must be a one-dimensional Array and must contain real numbers only.

Examples

 > $\mathrm{with}\left(\mathrm{SignalProcessing}\right):$
 > $\mathrm{f1}≔12.0:$
 > $\mathrm{f2}≔20.0:$
 > $\mathrm{Fs}≔1000:$
 > $\mathrm{signal}≔\mathrm{Vector}\left({2}^{10},i↦\mathrm{sin}\left(\frac{2\cdot \mathrm{f1}\cdot \mathrm{\pi }\cdot i}{\mathrm{Fs}}\right)+1.5\cdot \mathrm{sin}\left(\frac{2\cdot \mathrm{f2}\cdot \mathrm{\pi }\cdot i}{\mathrm{Fs}}\right),'\mathrm{datatype}'='\mathrm{float}\left[8\right]'\right):$
 > $t≔\mathrm{Vector}\left({2}^{10},i↦\frac{1.0\cdot i}{\mathrm{Fs}},'\mathrm{datatype}'='\mathrm{float}\left[8\right]'\right):$
 > $\mathrm{plot}\left(t,\mathrm{signal}\right)$
 > $c,\mathrm{nd}≔\mathrm{ComplexCepstrum}\left(\mathrm{signal}\right)$
 > $\mathrm{ic}≔\mathrm{InverseComplexCepstrum}\left(c,\mathrm{nd}\right)$
 > $\mathrm{plot}\left(t,\mathrm{ic}\right)$

Compatibility

 • The SignalProcessing[InverseComplexCepstrum] command was introduced in Maple 2019.
 • For more information on Maple 2019 changes, see Updates in Maple 2019.