>

$\mathrm{with}\left(\mathrm{PolyhedralSets}\right)\:$

The coordinates of a set are inferred from the relations, if not explicitly provided
>

$\mathrm{p1}\u2254\mathrm{PolyhedralSet}\left(\left[3\le x\,10\le y+x\,x\le 10\right]\right)\;$$\mathrm{coords}\u2254\mathrm{Coordinates}\left(\mathrm{p1}\right)$

${\mathrm{p1}}{\u2254}{\{}\begin{array}{lll}{\mathrm{Coordinates}}& {\:}& \left[{x}{\,}{y}\right]\\ {\mathrm{Relations}}& {\:}& \left[{}{y}{}{x}{\le}{\mathrm{10}}{\,}{}{x}{\le}{\mathrm{3}}{\,}{x}{\le}{10}\right]\end{array}$
 
${\mathrm{coords}}{\u2254}\left[{x}{\,}{y}\right]$
 (1) 
The Relations command gives you programmatic access to the set's definition
>

$\mathrm{Relations}\left(\mathrm{p1}\right)$

$\left[{}{y}{}{x}{\le}{\mathrm{10}}{\,}{}{x}{\le}{\mathrm{3}}{\,}{x}{\le}{10}\right]$
 (2) 